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ABSTRACT 
 

Electricity industries worldwide are undergoing a period of profound upheaval. The 

conventional vertically integrated mechanism is being replaced by a competitive market 

environment. Generation companies have incentives to apply novel technologies to lower 

production costs, for example: Combined Cycle units. Economic dispatch with Combined 

Cycle units becomes a non-convex optimization problem, which is difficult if not 

impossible to solve by conventional methods. Several techniques are proposed here: Mixed 

Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. 

Evolutionary Algorithms share a common mechanism, stochastic searching per generation. 

The stochastic property makes evolutionary algorithms robust and adaptive enough to solve 

a non-convex optimization problem. This research implements GA, EP, and PS algorithms 

for economic dispatch with Combined Cycle units, and makes a comparison with classical 

Mixed Integer Linear Programming. 

The electricity market equilibrium model not only helps Independent System 

Operator/Regulator analyze market performance and market power, but also provides 

Market Participants the ability to build optimal bidding strategies based on Microeconomics 

analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. 

This research identifies a proper SFE model, which can be applied to a multiple period 

situation. The equilibrium condition using discrete time optimal control is then developed 

for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria 

and mixed strategies, which are caused by the transmission network. Additionally, an 

advantage of the proposed model for merchant transmission planning is discussed. 
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A market simulator is a valuable training and evaluation tool to assist sellers, buyers, 

and regulators to understand market performance and make better decisions. A traditional 

optimization model may not be enough to consider the distributed, large-scale, and complex 

energy market. This research compares the performance and searching paths of different 

artificial life techniques such as Genetic Algorithm (GA), Evolutionary Programming (EP), 

and Particle Swarm (PS), and look for a proper method to emulate Generation Companies' 

(GENCOs) bidding strategies. 

After deregulation, GENCOs face risk and uncertainty associated with the 

fast-changing market environment. A profit-based bidding decision support system is 

critical for GENCOs to keep a competitive position in the new environment. Most past 

research do not pay special attention to the piecewise staircase characteristic of generator 

offer curves. This research proposes an optimal bidding strategy based on Parametric 

Linear Programming. The proposed algorithm is able to handle actual piecewise staircase 

energy offer curves. The proposed method is then extended to incorporate incomplete 

information based on Decision Analysis. Finally, the author develops an optimal bidding 

tool (GenBidding) and applies it to the RTS96 test system. 
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CHAPTER 1. OVERVIEW 
 

1.1 Electric Power Industry Deregulation 

The electric power industry started over 100 years ago with the electrical pioneers of 

the late 1800s. For decades, the electric industry is viewed as a benchmark of natural 

monopoly where economies of scale overwhelm the deadweight losses associated with 

monopoly operation, for example, a high-capacity generator is less expensive to build and 

operate than two small generators; a set of transmission or distribution lines to serve 

customers down a street is less expensive than two parallel ones [1]. Electric power 

generation, transmission, and distribution are often carried out within the domain of large 

vertically integrated utilities. Such a utility is guaranteed to be the only provider in a given 

service territory by franchise rights. In return, the utility has the obligation to serve 

everyone within its region [1]. The operation of a vertically integrated utility is shown in 

Fig. 1. The price setting is done by an external regulatory agency and reflects an average 

cost incurred in generation, transmission, and distribution. Not every utility is considered as 

a vertically integrated utility. For example, in the USA there are over 3000 utilities, 30% of 

which generate power and 70% are distribution utilities that purchase wholesale power then 

resell to local consumers [2]. The utilities in the USA can be categorized into four classes: 

Federally-Owned Utilities: Tennessee Valley Authority (TVA), Bonneville Power 

Administration (BPA); 

Investor-Owned Utilities (IOU): PG&E, TXU, MidAmerican, Alliant Energy; 

Other Publicly-Owned Utilities: Ames Electric Power Plant (Municipal); 
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Cooperatively-Owned Utilities: Rural (Co-Gen); 

 

Figure 1:  A Regulated Electric Power Industry 

During the 1990s, the economic incentives to pursue cheap and reliable electric 

power supply have forced vertically integrated utilities worldwide to change their ways of 

doing business from regulation to deregulation. The generation and distribution (or 

consumption) sectors are divested from transmission. Competition and commercial 

incentives are introduced into generation and consumption segments, while the 

transmission part remains regulated and "open-access" to everyone. The idea of 

“deregulation” is widely believed to contribute a more efficient and economical electrical 

power industry in today’s environment. The motivations for deregulation are many and 

differ over regions and countries [3]. 

First, monopolistic inefficiency, which is a prominent cause to high energy price, 

increase distrusts of the public and investors for regulation. This has affected the 

availability of financial investments in expanding generation and transmission capacities. In 
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such situations, many countries restructure their power sectors in order to enhance 

efficiency, lower price, and provide better service. 

Second, economies of scale in the generation sector began to point downward with 

the advances in generation technology. The efficiency of a traditional fossil fuel unit 

increases with its rating only if capacity belongs to a certain range. Moreover, combined 

cycle units and renewable power plants (such as wind, solar, and biomass etc.), which are 

very popular now, are of higher efficiency, faster response speed, and environmental 

friendliness. However, they tend to be lower in rating because of design complexities. 

Besides, two major reasons make small units and distributed generations attractive to 

utilities and independent power producers [4, 5]: 

Smaller plants can be built more quickly, and their construction costs are 

consequently subject to less economic uncertainty. 

Smaller plants can be located more closely to load centers, an attribute that decreases 

system losses and tends to be advantageous for system reliability. 

Table 1: Relative Size of Generation Units [2] 

Unit type Capacity 

Nuclear ≥ 1000 MW 

Hydro 100 – 200 MW 

Fossil steam 200 – 800 MW 

Gas turbine ≤ 200 MW 

Wind turbine 400 KW – 1.2 MW 

Solar and fuel cell 100 KW 
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Third, the development of Computer Science makes people believe that a 

competitive electricity market can be implemented and operated while maintaining power 

system security. Before deregulation, it was felt that the coordination required in operating 

a power system precluded competition among its participants [4]. However, the progress of 

both hardware and software makes coordination possible in a competitive environment. 

Modern computer networks and database techniques provide a solid hardware foundation 

for market data exchange and information storage. Novel decision support software 

packages are able to assist participants to play rationally in a competitive and fast-changing 

marketplace. 

Fourth, in 1988 Dr. Fred Schweppe of MIT firstly outlined a plausible method [6], 

named spot pricing, by which electric energy could be bought, sold, and traded in real time 

at marginal costs, and those costs take into account time- and space– varying values of 

electricity. The articulation of how an electric energy marketplace might operate enabled 

competition in electric energy to be seriously considered [4]. 

Fifth, several industries such as Natural Gas, Communications, and Airlines have 

been deregulated recently, and these successful examples provide good models for the 

electric power industry [1]. 

 

A variety of models for deregulation have been proposed, investigated, and 

implemented. A common strategy is that regulatory agencies re-constructs the electric 

power industry by breaking vertically integrated utilities into horizontally independent 

entities including Generation Company (GENCO), Transmission Company (TRANSCO), 

Distribution Company (DISCO), and Load Serve Entity (LSE) among other possibilities. 
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The institutional divesture of generation and distribution from transmission lays down the 

economic foundation of current electricity markets. Fig. 2 shows a typical structure of a 

deregulated electric power industry. A non-profit entity Independent System Operators 

(ISO) is established which has the responsibility of ensuring the reliability and security of 

system operation [7]. The Federal Energy Regulatory Commission (FERC) proposed 

Standard Market Design (SMD) to unify best practices in market design in 2002. Since it is 

impossible to recommend a solution that fits all situations, the SMD allows for regional 

variations. Therefore, these responsibilities may vary widely among the different ISOs 

existing or emerging in the U.S. and other countries. 

 

Figure 2:  A Deregulated Electric Power Industry 

On December 20, 1999, the Federal Energy Regulatory Commission (FERC) issued 

Order No. 2000, which is intended to promote efficient, reliable, non-discriminatory 

transmission systems based on market mechanisms. Under FERC Order No. 2000, Regional 
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Transmission Organizations (RTOs) are being created to operate regional transmission 

systems and satisfy eight minimum functions [8]. Fig. 3 shows some existing and proposed 

RTOs in North America until March, 2007. [9] 

Tariff design and administration 

Transmission congestion management 

Management of parallel-path/loop flow 

Procurement/provision of ancillary services necessary for grid operations 

OASIS administration, including identification of total transfer capability (TTC) and 

available transfer capability (ATC) 

Market monitoring 

Transmission planning and expansion 

Interregional coordination 

 

Figure 3:  Existing and Proposed RTO Configurations [9] 
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1.2 Organization of the Dissertation 

This dissertation is organized in seven parts. Chapter One introduces the 

deregulation of electric power industry and this work. Chapter Two first reviews the past 

research done on electricity market simulation. Since this research mainly focuses on 

GENCOs’ behaviors, not other players, suppliers’ bidding strategies and supply function 

equilibrium are reviewed and discussed in detail. Furthermore, evolutionary algorithms are 

introduced and summarized in section 2.4. Chapter Three focuses on a basic economic 

dispatch problem that can be regarded as a prototype of bidding where units naively provide 

true information. But the emphasis is to involve non-convex cost functions. Chapter Four 

develops two supply function equilibrium bidding models: one is to involve GENCOs’ 

inter-temporal production constraints and the other is to consider transmission congestion. 

Chapter Five compares the performance of learning algorithms for EDC and explores the 

feasibility for GENCOs to evolve the market equilibria. Chapter Six focuses on a classical 

optimization method ---- Linear Programming, to study optimal bidding strategies. The 

proposed method considers the non-convexity of piecewise staircase energy offer curve. It 

also incorporates incomplete information based on Decision Analysis. Finally, the author 

develops an optimal bidding tool and applies it to the RTS 96 test system. Chapter Seven 

summarizes this dissertation and makes a conclusion. 
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CHAPTER 2. LITERATURE REVIEW 
 

2.1 Electricity Market Simulation 

Electric power industry worldwide is undergoing a period of profound upheaval. 

Conventional vertically integrated mechanism is replaced by a competitive market 

environment. A pure operating cost optimization is not enough to capture all of 

characteristics of the distributed, large-scale, and complex system. A market simulator will 

be a valuable training and evaluation tool to assist sellers, buyers, regulators, and other 

players to understand market’s dynamic performance, price fluctuation, and make better 

decisions avoiding bulk risks in both short-run operation and long-run planning [10]. 

A software package called production-costing program was developed before 

deregulation and typically was designed to handle large number of generation units 

operating under a centralized utility. This program calculates a generation systems’ 

production costs (costs of generating power) together with generation reliability indices for 

long-run generation planning decisions. Such programs incorporate fuel costs and heat rates 

together with probabilistic models of the load and each generator’s availability. Because of 

the computational requirements to handle the probabilistic nature of the models 

(convolution), such programs usually do not represent the network [4]. 

A market simulator can be regarded as a modern version of the production-costing 

program. This simulator not only keeps the function to track a generation system’s optimal 

production decision, but also models every other player’s behavior and the rules of 

interaction among players at both of physical and economic layers. Market state variables 
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such as market clearing price (MCP) / locational marginal price (LMP) etc. evolve with 

respect to time according to the interactions between market participants. Some critical 

insights like market efficiency, transmission congestion effects as well as market power can 

be also achieved through a simulation process. 

To date there have been a number of market simulators proposed and implemented 

in literatures. The simulators can be classified in terms of the market structure, the 

representation of transmission network, and the modeling of interaction between players 

etc. 

Market Structure 

Three common market structures have been assumed in proposed market simulators. 

A power pool is a centralized marketplace where market participants submit price/quantity 

bids/offers. A market operator organizes and regulates the bids/offers by an auction 

mechanism. If both GENCOs and DISCOs can compete, it is called a double side auction. 

If only supplier can compete in the pool, it is called a single side auction, which happens 

when demand side is of less elasticity. Two settlement mechanisms in pool are proposed – 

uniform pricing (all accepted suppliers are charged with the last accepted bid) and 

pay-as-bid (all accepted suppliers are charged with their own bids) [1]. Bilateral contracts 

are negotiable agreements between sellers and buyers (or traders) about power supply and 

receipt. The bilateral-contract is flexible and can be signed Over-the-Counter (OTC); 

negotiating parties can specify their own contract terms [11]. The hybrid model combines 

features of pools and bilateral contracts. In this model, a pool isn’t mandatory, and 

customers can either negotiate a power supply agreement directly with suppliers or accept 

power at the pool market price. This model therefore offers more customer choices [11]. 
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Transmission Network 

Because of highly nonlinearity, some market simulators disregards transmission 

network entirely [12] [13] [14]. It is as if all of buyers and sellers are connected at a single 

physical bus/hub or transmission network has infinite transfer capacity [4]. The simplified 

model brings in huge conveniences for studying pure economic interaction at the cost of 

losing some accuracy and price predictability. Sheble etc. [15] presented and implemented a 

market simulator (Market Sim) based on a transportation model. The network capacity is 

represented by available transfer capability (ATC). ATC value is updated after each round 

simulation. Yang [16], and Torre [17, 18], used DC power flow to represent transmission 

network in market simulators. Some algorithms like linear programming (LP) or mixed 

integer programming (MIP) can provide on-line sensitivity analysis. However, DC power 

flow is not able to handle reactive power and voltage stability issues. One tool (MAPS) 

developed by GE uses a detailed electrical model of the entire transmission network, along 

with generation shift factors determined from a solved AC load flow, to calculate real 

power flows. This tool captures the economic penalties of re-dispatching generation to 

satisfy transmission line flow limits and security constraints [4]. 

Modeling of Interaction 

There are at least two distinct approaches to model interaction between players. First, 

equilibrium modeling uses a simplified mathematical representation of a market. J. Nash 

described the elementary principle of an equilibrium as a condition where no player can 

improve his situation by playing differently [19]. Two famous Oligopolistic models in a 

market for homogeneous products are the Cournot and Bertrand models [20]. In the 

Cournot model, players choose their levels of production assuming their rivals do not 
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change production levels, and in the Bertrand model players choose their offer prices 

assuming their rivals do not change prices. In both cases, the choice of quantity or price will 

result in the other being uniquely determined. Under simplifying assumptions about costs 

and demand, it can be proved that equilibrium always exists [19]. The Supply Function 

Equilibrium (SFE) model is an extension to the Cournot and Bertrand by introducing a 

functional form to represent variation or uncertainty. Especially players can choose a linear 

bid/offer function with two parameters, slope and intercept, that holds regardless of the 

outcome of the demand level. The equilibrium result is distributions for prices and 

schedules [19]. SFE model will be discussed later in detail. 

Next approach is inspired from Experimental Economics that uses laboratory 

experiments to evaluate economic theory. In power market simulation, computer agents 

normally are meant to replace human agents, making bid decisions to maximize profits [19]. 

The term "agent" is usually used to describe self – contained program, which can control 

their own actions, based on their perceptions of their operating environment [19]. Usually 

agents have some of these characteristics, (a) Autonomous (b) Intelligent (c) Rational (d) 

Learning ability (e) Social incorporation ability [21]. Two advantages of computer agents 

compared to human agents are that their decision-making environment can be precisely 

controlled and analyzed and that such experiments can be run parametrically in the 

thousands with little added expense. A disadvantage is that it can be difficult to “teach” 

computer agents to make complex decisions [19]. Furthermore multi-agent systems (MAS) 

model complex distributed systems as a set of software agents that interact in a common 

environment. The integration of a system from a number of agents lets the system react and 

adapt better in a changing environment [10]. 
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Table 2-4 show some major results from an on-line survey on current research and 

development of electricity market simulator. This survey is conducted by EPRI [19] 

 

Table 2: Use and Capabilities [19] 

  
Simulation Type Problem Size 

 Product Name 

H
um

an E
xperim

ents 

A
gent-B

ased 
E

xperim
ents 

E
quilibrium

 
C

om
putations 

B
uses 

Transm
ission L

ines 

G
enerating U

nits 

Participants 

Interdependent Tim
e 

Periods 

Interdependent 
C

ontingencies 

MAPS -9 -9 -9 50000 100000 7500 175 8760 5000 
EP 1 1 1 limited by solution time  0 0 0 0 
MELBOURNE 0 1 0 100 0 100 100 100000 10 
GE MAPS 0 0 0 0 0 0 0 0 0 
EMCAS 1 1 1 2000 2400 400 ? 8760 ? 
PLEXOS 0 0 1 15000 18000 2000 1000 800000 100000 
MADERE 0 1 0 ? ? ? ? 1000 1 
EE 1 0 1 4 5 40 16 ? ? 
ENERGY 2020 1 1 1 110 2000 50000 80 500 150 
NetaSim 0 0 1 0 0 200 30 0 0 
TSCM 0 0 1 53 71 19 5 2 6 
COMPETES 0 0 1 ~20 ~40 ~1000 20 1 1 
CTCEM 0 0 1 ~100 ~800 ~3000 ~800 1 0 
COMPETES 0 0 1 19 34 261 10 1 1 
PowerACE 0 1 0 1 1 300 100 10000 0 
LTEPM 0 0 1 1 0 500 1 14400 5 
Eureca 0 0 1 30 30 15000 1 14400 5 
PD EMPS Price Forecast 0 0 1 30 30 15000 1 14400 5 
IPSPE Model 0 0 1 8 20 1500 0 672 1 
STEMS-RT 0 0 1 180 200 200 50 1 4 
Market Sim 0 0 1 2500 5000 500 500 8000 2000 
GENERIS 0 1 0        
POWERS 0 0 1             
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Table 3: Market Participant Modeling Features [19] 

  Market Participant Modeling 

 Product Name 

C
ournot 

B
ertrand 

Supply Function 
E

quilibrium
 (SFE

) 

M
PE

C
 

H
euristic 

O
ther 

Describes 

MAPS 0 0 1 0 1 -9   
EP          
MELBOURNE 1 1 0 0 1 -9   
GE MAPS          
EMCAS 1 1 1 0 1 1 Learning and adaptation 
PLEXOS 1 1 0 0 1 1 LRMC Recovery 
MADERE 0 0 0 0 1 -9   
EE -9 -9 1 -9 -9 -9   
ENERGY 2020 0 0 0 -9 1 -9   
NetaSim -9 -9 -9 -9 -9 -9   
TSCM 1 0 0 1 0 1 EPEC, Subgame Perfect Two Stage Nash 
COMPETES 1 1 0 0 0 1 Conjectured Supply Functions 
CTCEM 1 1 0 0 0 0   
COMPETES          
PowerACE 0 0 0 0 0 -9   
LTEPM 0 0 1 0 1 -9   
Eureca 0 0 1 1 0 -9   
PD EMPS Price Forecast 0 0 1 1 0 -9 Water Value Method - Multi Area 
IPSPE Model -9 -9 -9 -9 -9 -9   
STEMS-RT 0 0 0 1 1 0   
Market Sim          
GENERIS          
POWERS               

 

Table 4: Demand Response and Load Modeling [19] 

  Demand Response   Load Modeling 

 Product Name 

Is D
em

and Price 
R

esponsive? 

"H
ard-w

ired" 
E

lasticities 

U
ser-Specified 
E

lasticities 

U
ser-Specified 
R

eductions 

O
ther 

W
holesale Price C

aps 

Fixed 

Stochastic 

Price R
esponsive 

O
ther 

MAPS 1 -9 1 1 -9 1 1 0 1 -9 
EP             
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  Demand Response   Load Modeling 

 Product Name 

Is D
em

and Price 
R

esponsive? 

"H
ard-w

ired" 
E

lasticities 

U
ser-Specified 
E

lasticities 

U
ser-Specified 
R

eductions 

O
ther 

W
holesale Price C

aps 

Fixed 

Stochastic 

Price R
esponsive 

O
ther 

MELBOURNE 0 -9 -9 -9 -9 1 1 1 0 -9 
GE MAPS             

EMCAS 1 1 1 1 -9 1 1 1 1 -9 
PLEXOS 1 -9 1 1 1 1 1 1 1 -9 
MADERE 1 -9 -9 -9 1 0 1 1 1 -9 
EE 1 -9 1 -9 -9 1 1 1 1 -9 
ENERGY 2020 1 -9 -9 -9 1 1 1 1 1 -9 
NetaSim             
TSCM 1 -9 1 -9 -9 1 0 0 1 1 
COMPETES 1 1 1 -9 -9 0 1 1 1 -9 
CTCEM 1 -9 1 -9 -9 0 1 -9 1 -9 
COMPETES 1 -9 1 -9 -9 0 1 0 1 -9 
PowerACE 1 -9 1 -9 -9 1 1 1 0 -9 
LTEPM 0 -9 -9 -9 -9 1 1 0 0 -9 
Eureca 0 -9 -9 -9 -9 1 1 0 0 -9 
PD EMPS Price Forecast 0 -9 -9 -9 -9 1 1 0 0 -9 
IPSPE Model 0 -9 -9 -9 -9 0 1 1 -9 -9 
STEMS-RT 1 -9 -9 1 -9 1 1 0 1 -9 
Market Sim                 
GENERIS                 
POWERS                     

2.2 GENCO Bidding Strategies 

In US, pre-deregulation the electricity whole price is set and regulated by FERC or 

State Public Utility Commission (SPUC). A vertical integrated electric utility only operates 

based on cost minimization in a short run, and keeps a rate of return supervised by FERC or 

SPUC in a long run. 

Current industry structure generally requires separating the functions associated with 

selling and buying electric energy, the generation and distribution (or consumption), from 

transmission. Market participants have to face the volatility of price and make sure 
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profitable in a long run. Instead of discussing all of players, this paper will mainly focus on 

the short-run operation strategy of GENCOs. The traditional economic dispatch (EDC) and 

unit commitment (UC) programs used by electric utilities for many years are only helpful to 

GENCOs who own multiple generation facilities when they make one offer to the market 

and then need to dispatch their units in the most economic fashion to deliver this offer. A 

profit based bidding decision support system is critical for GENCOs to operate in the new 

environment. 

The previous research on bidding strategies is methodologically classified into the 

following three groups. 

Pure Optimization Model 

The first group of research pays attention to a specific player, the one under study. 

The idea is to simplify “the rest of the world” as a set of exogenous variables (stochastic or 

deterministic). The group of study has developed many mathematical programming models 

to find an optimal bidding strategy (e.g. Dynamic Programming, Fuzzy Linear 

Programming, and Stochastic Dynamic Programming etc.). A bidding strategy using 

Markov Decision Process (MDP) is proposed in [22]. The authors discussed the impacts of 

production limit and market share on optimal bidding strategies. The number of states is 

reduced by classifying peak/off-peak load, peak/off-peak price. A decision aid for 

scheduling and hedging (DASH) model is proposed in [79] for power portfolio optimization. 

The inputs of the model, electricity demand, electricity forward price, gas forward price, 

and electricity spot price are captured by several stochastic processes. A multiple time scale 

decision making problem is solved considering both long-term financial and short-term 

operational constraints. The group of models is usually easier to generalize and analyze 
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because of well-established mathematical foundation. The disadvantage is that the methods 

do not model the behavior aspect of players. 

Game Theory Model 

The second group discussed the bidding strategies from a perspective of players’ 

behaviors. It also can be called equilibrium model for the whole purpose of the group is to 

find economic equilibria of the system. The mutual interaction is represented by Game 

Theory. Game Theory can be classified into two areas – Cooperative and Non-cooperative 

[20]. Cooperative games can be applied to investigate the effects of firms’ collusion. In a 

model named Stackelberg game, a firm as a leader (first-mover) with largest market power 

is assumed to can manipulate prices subject to the accurately predicted reactions of naïve 

followers who have small market shares and believe they can not affect prices [23]. The 

Stackelberg game is also modeled as a mathematical programming with equilibrium 

constraints (MPEC) problem [24]. 

In more competitive models, Cournot and Bertrand are assumed to represent the type 

of interaction [25] [26] [27] [28] [29]. However, assumptions of the two models are naïve 

for ISO-type auctions, in which GENCOs bid a whole set of price/quantity pairs for each 

generator. In this case, decision variables become parameters of a function that determines 

a relationship between price and quantity that GENCO is willing to produce. The type of 

competition is termed Supply Function Equilibrium. Next section will review Supply 

Function Equilibrium model in detail. Game with incomplete information is discussed in 

[30]. A contribution of this group is that this research provides analytical rationale and 

explanation regarding how market power can be exercised by strategic bidding behavior 

[31]. However, game theory itself is based on the rationality of all players. This assumption 
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does not hold in practice. The issue of multiple equilibria frustrates a lot of game theorists. 

This type of game model is logically limited lack of dynamic theory, too. 

Agent and Heuristic Model 

The last group of past research efforts fully utilizes computer science methods to 

mimic human beings and simulate optimal bidding strategies [31]. Sheble [13] etc. 

proposed a genetic algorithm based framework to evolve utility bidding strategies in a 

double side auction marketplace and developed a market simulator by Pascal language. An 

evolutionary programming bidding strategy is discussed in [32]. F. F. Wu etc. [33, 34] etc. 

have discussed those issues on modeling electricity market as MAS, both theoretical and 

practical aspects. Reinforcement learning algorithms are considered to “teach” an agent to 

learn the optimal bidding strategy. A particular reinforcement-learning algorithm–Roth/Erv 

algorithm is implemented in [35] [36]. Others joined MDP model in Group 1 with some 

reinforcement learning algorithms. They proposed to use Q-learning or Actor/Critic 

learning algorithms to solve optimal policy for a MDP with incomplete information [37] 

[38] [39]. The basic intuition underlying reinforcement learning is that the tendency to 

implement an action should be strengthened if it produces favorable results and weakened if 

it produces unfavorable results [40]. The group of models is more flexible, robust, and 

easily implemented compared with analytical (mathematical) approach (Group 1 and 2). 

However, the drawback is that the underlying mathematical foundation is not well 

developed. 
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2.3 Supply Function Equilibrium Model 

The general supply function equilibrium (SFE) model was introduced by Klemperer 

and Meyer (1989) and applied by Green and Newbery (1992) to the electricity industry 

reform in England and Wales (E&W). SFE is attractive compared to Cournot or Bertrand 

because it offers a more realistic view of electricity market, where bidding rules typically 

require suppliers to offer a price schedule (a supply curve) rather than a series of pure 

quantity or pure price bids. [41] 

In SFE model, functional forms must be specified for demand, cost, and supply. A 

particularly simple form is to assume a linear demand function, a quadratic convex cost 

function, and a linear supply function. The great advantage of the SFE with linear 

functional forms over the more general form is the analytical solvability. 

Assume that for GENCO i, the true cost function is given by a quadratic convex 

function 2( ) +0.5 ,   0i it i it i it iCost q q qα β β= >          (1) 

It is also assumed that the rules require GENCO i to bid a linear increasing supply 

function with two strategic parameters: intercept lit and slope kit. 

Pt = lit + kitqit,  kit>0            (2) 

The system integrated demand curve is assumed to be 

Pt = ht – gtQt,  gt>0            (3) 

The market clearing condition is  

Qt=
1

I

it
i

q
=
∑                  (4) 
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In this stage, transmission network impacts are not considered yet. Therefore, the 

market clearing price is the same for all players, and this market clearing condition 

maximizes the social welfare. 

The profit for GENCO i at time t is 

( ) ( )it t it t i itPq P Cost qπ = −                (5) 

Each GENCO i manipulates its parameters, intercept lit and slope kit, to maximize its 

profits, while the market clearing condition is satisfied. The supply function equilibrium 

implies no player can increase profit by unilaterally change its bid supply function. [42] 

In Mathematics, a strategies profile { }* *& , for all 1,..., ,  1,..,it itl k i I t T= =  is called to 

constitute a Supply Function Nash Equilibrium, if, with this strategic parameters * *&  it itl k , 

GENCO i maximizes his profit ( ), , ,it it it it itl l k kπ − − , given all of other GENCOs stick to the 

bid * *&  it itl k− − . The reasoning must hold for i I∀ ∈ .  

The optimal condition of SFE is to set the first-order derivative to be zero for all of 

GENCOs:  

( ) ( )( ) 0,     it i it it t
it t t

t it t

d dCost q dq Pq P P for i
dP dq dP
π ⎡ ⎤

= + − = ∀⎢ ⎥
⎣ ⎦

      (6) 

Using the market clearing condition (4), one obtains 

1,

( ) ( )( ) 0,     
I

i it t vt t
it t t

v v iit t t

dCost q dQ dq Pq P P for i
dq dP dP= ≠

⎡ ⎤ ⎛ ⎞
= − − + = ∀⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠

∑     (7) 

The basic equation governing the SFE solution is provided by Green (1996). Any 

solution to these coupled differential equations such that each qi is non-decreasing over the 
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relevant range of prices is an SFE [42]. However, the SFE may not exist since it is a 

nonlinear differential equation system. 

Substituting (1), (2), and (3) into equation (7), one obtains 

1,

1 1=
I

t it t it
t i i

v v iit it t it

P l P lP
k k g k

α β
= ≠

⎛ ⎞⎛ ⎞− −
− − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  

After some rearrangement, it becomes to be 

1,

1 1 11 ,     
I

it i i it
t t i

v v iit it it it t it

l lP P for i
k k k k g k

β βα
= ≠

⎛ ⎞⎛ ⎞ ⎛ ⎞
− = − − + + ∀⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑     (8) 

In previous literatures, four alternative specifications of the strategic parameters are 

summarized by R. Baldick [43]: 

lit – parameterization, where player i can choose the intercept arbitrarily in supply 

function but is required to specify a fixed, pre-chosen slope kit. Usually, the fixed value is 

further assumed to be equal to the true slope in marginal cost function, βi. 

kit – parameterization, where player i can choose the (non-negative) slope arbitrarily 

in supply function but is required to specify a fixed, pre-chosen intercept lit. Usually, the 

fixed value is further assumed to be equal to the true intercept in marginal cost function, αi. 

( )it itk l∝  – parameterization, where player i can choose kit and lit subject to the 

condition that kit and lit have a fixed linear relationship. Usually, the fixed value is further 

assumed to be equal to the true ratio of slope and intercept in marginal cost function, 

it it

it it

l
k

α
β

= . 

( ),it itk l  – parameterization, where play i can choose kit and lit arbitrarily. 
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According to equation (8), since there are totally I equations and 2I unknowns 

{ }, | 1,...,  it itl k i I= , it is inevitable that multiple SFEs exist when players have full 

flexibility in choosing the parameters specifying their bid functions ( ),it itk l . Therefore, the 

bottom line is that one has to assign I parameters, then calculate the other I parameters 

under equilibrium conditions. 

In modeling the E&W market, Green and Newbery [42, 44] make an important 

assumption, which is called Assumption (*): 

Assuming each player as specifying a single supply function bid that applied to all 

pricing periods over an extended length of time.  (*) 

The assumption was true on a daily basis in the E&W pool until 2001. Actually, the 

assumption implicitly implies kit – parameterization with lit equal to the true intercept αi, 

which can be shown as follows: 

Revisiting equation (8), since the bid function is required to be consistent during a 

period of time, (8) should be satisfied for the realized prices during that time period. If there 

are at least two levels of demand cleared during that period, then there will be at least two 

prices realized and (8) will be satisfied as an identity [45]. Consequently, the coefficient of 

price on the left hand and right hand of (8) should be equal, and similarly the constant term 

should be equal. Therefore, the conditions for an SFE are: 

1,

1 1 11
I

i

v v iit it t itk k g k
β

= ≠

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑             (9) 

1,

1 1I
it i it

i
v v iit it t it

l l
k k g k

βα
= ≠

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑            (10) 

Substituting (9) into (10), one obtains 
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lit = αi    for i∀  

Conversely, it is also easy to show that kit – parameterization with lit equal to the true 

intercept αi, implies Assumption (*). 

Therefore, generally speaking,  

Assumption (*) ⇔  kit – parameterization with lit = αit, which is defined as the two 

conditions: 1,

1 1 11
I

i

v v iit it t it

it t

k k g k
l ι

β

α
= ≠

⎧ ⎛ ⎞⎛ ⎞
= − +⎪ ⎜ ⎟⎜ ⎟

⎨ ⎝ ⎠⎝ ⎠
⎪ =⎩

∑  

However, in other markets a different supply function can be specified for each 

pricing period. Assumption (*) in [42, 44] of a single supply function applying across 

multiple pricing periods does not hold. Furthermore, assuming the consistency of bid 

supply functions across multiple periods severely restricts the flexibility of bids compared 

to the true flexibility in these markets [45]. Consequently, kit – parameterization can not be 

applied into either a market without the Assumption (*) or multiple period situations. 

On the contrary, Hobbs and his colleagues [23] [24] use a single pricing-period 

model; that is, they do not assume that the supply function must be the same across multiple 

pricing periods. They argue that GENCOs only manipulate the intercept of the bid functions 

(i.e. lit – parameterization), and not its slope. The reasons they proposed are [24]: 

Slopes of marginal cost functions for individual generators are usually shallow, so 

the very steep slopes that would result from manipulating just kit would not be credible. 

The steepness of an aggregate bid curve for an entire firm can be manipulated by 

having different markups lit – αit for different units. 
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From my point of view, the main reason is that many electricity markets worldwide 

allow GENCOs to bid a different supply function for each period. Assumption (*) does not 

hold and kit – parameterization is not valid. Another key point is that since lit – 

parameterization leads a linear equation system, the existence and uniqueness of the 

solution is easy to prove. A lot of computational difficulties can be reduced in lit – 

parameterization compared to kit – parameterization. 

 

2.4 Evolutionary Computation and Artificial Life Techniques 

Evolutionary computation is a general term for several computational techniques that 

take their inspiration from natural selection in the biological world and use this mechanism 

of “Evolution” as key elements in their design and implementation [46]. There are a variety 

of evolutionary computational methods that have been proposed and studied which are 

referred to as evolutionary algorithms [47]. ALIFE (artificial life) is a common acronym to 

tie all of the ideas based on biological emulation, including evolutionary computation. It is 

the attempt to simulate, or in some case emulate, the governing principles of life [47]. 

Artificial life techniques have found success in solving several different complicated 

centralized non-convex optimization problems and for emulating intelligent market 

participants’ individual decentralized optimization problem. 

Evolutionary algorithms share some common conceptual base of simulating the 

evolution of individual structures via processes of selection, reproduction, and mutation. 

Several different types of evolutionary algorithms were developed independently. These 

include genetic programming (GP), evolutionary programming (EP), evolutionary strategies 
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(ES) and genetic algorithms (GA) etc. This part of the proposal summarizes the following 

algorithms: Genetic Algorithms, Evolutionary Programming, and Particle Swarm.  

2.4.1 Genetic Algorithm 

Genetic algorithm (GA), developed by John Holland (1975), has traditionally used a 

more domain independent representation, namely, bit-strings. However, many recent 

applications of GAs have focused on other representations, such as graphs, lisp expressions, 

ordered lists, and real-valued vectors. 

Genetic algorithms are performance driven method of finding useful structures with 

a computer, based loosely on the theory of evolution. In evolution successful creatures mate, 

blending their genes, then undergoing a small number random change via mutation. A 

genetic algorithm uses selection to pick parents in some sort of relation to their quality. It 

blends structures via a process called crossover. Small changes are accomplished by 

mutation [48].  

Crossover 

Crossover selects bits from each of two genes to produces new genes. There are 

several kinds of options for performing crossover. The “No crossover” makes the new 

genes copies of the old genes. When this is used, all innovation in the searching results 

from mutations. One-point crossover chooses a random position in the genes and exchanges 

the bits after that point.  Two-point crossover chooses a pair of positions in the genes and 

exchanges those bits between the positions. Uniform crossover either swaps or leaves alone 

the bits in the genes at each position with a probability of 0.5. This form of crossover is 
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probably best for efficient search but is computationally intensive, as it requires a lot of 

random numbers. 

Mutation 

Mutation is a mechanism to produce new pieces of genes that may contain new 

information. The mutation rate is the probability, independent for each bit, that the bit will 

be flipped. Mutation provides an ongoing source of exploration in the searching. This is 

absolutely necessary in a situation where the measure of quality is not absolute. 

Selection 

Normally there are three selection techniques, proportional selection, rank selection, 

and roulette selection. All of them choose potential parental strategies in proportion to a 

number derived from the individual’s fitness [49]. 

Proportional selection takes the fitness, multiplies it by a scaling constant (ratio) and 

then adds a fixed offset. The probability of being chosen as a parent is directly proportional 

to this number. Proportional selection is used to speed convergence toward a particular 

value but may cause thrashing when the measure of quality is not absolute. 

Rank selection places the individuals in order from n (most fitness) to 1 (least fitness) 

and chooses them in proportion to their rank. This method of selection tends to both reduce 

the importance of differences between individuals when those differences are large and 

increases the importance of differences when they are small. 

Roulette selection chooses individuals in direct proportion to their fitness. It is 

equivalent to proportional selection with ratio one and offset zero. It is included as a 

separate option because of the prominence of roulette selection in the theory of genetic 

algorithms.  
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2.4.2 Evolutionary Programming 

Evolutionary Programming (EP) is another technique in the field of evolutionary 

computation. EP was proposed as a Finite State Machine (FSM) model by L. J. Fogel in 

1960s. In that model, the mutation operator of the state of machine is a kind of a uniform 

distribution. In 1990s, the idea of evolutionary programming was extended by D. B. Fogel 

to optimization. Now, EP has become a powerful optimization tool and has been applied to 

many real problems [50]. Unlike Newton method, EP does not depend on the curvatures of 

the objective functions but rather it is based on the mechanics of natural selections. The 

purpose of evolutionary programming is to do a stochastic search in order to seek an 

optimal solution to an optimization problem [51].  

The schematic diagram of the EP algorithm for optimization is depicted in Fig. 4:  

 

 
Figure 4:  Schematic Diagram of EP algorithm 

EP can be represented by a dynamic equation:  

1 2(0, ( ) )k k k

i i iX X Gaussian ϕ+ = +                               (11) 
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Where k

iX  represents individual i at generation k and 1k

iX +  is individual i at 

generation k+1. 

The standard deviation k

iϕ  is the mutation factor and indicates the range the 

offspring is created around its parent and is given by: 

i

k
k best

k

i

f
f

ϕ β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                             (12) 

Where:   

β : the scaling factor 

k

bestf : the best fitness at generation k 

k

if : the fitness of individual i at generation k 

The magnitude of k

iϕ  has impacts on the magnitude of changing in the offspring 

compared to the parent. The bigger the k

iϕ , the higher possibility the greater changing in 

1k

iX +  compared to k

iX  and vice versa. 

 

2.4.3 Particle Swarm 

Particle Swarm Optimization (PSO) is a recently proposed algorithm by James 

Kennedy and R. C. Eberhart in 1995, motivated by social behavior of organisms such as 

bird flocking and fish schooling. PSO algorithm is not only a tool for optimization, but also 

a tool for representing sociocognition of human and artificial agents, based on principles of 

social psychology. PSO as an optimization tool provides a population-based searching 

procedure in which individuals called particles change their position (state) with time. In a 
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PSO system, particles fly around in a multidimensional searching space. During flight, each 

particle adjusts its position according to its own experience, and according to the experience 

of a neighboring particle, making use of the best position encountered by itself and its 

neighbor. Thus, a PSO system combines local search methods with global search methods, 

attempting to balance exploration and exploitation [52]. 

PSO shares many similarities with evolutionary computation techniques such as 

Genetic Algorithms (GA). The system is initialized with a population of random solutions 

and searches for optima by updating generations. However, unlike GA, PSO has no 

evolution operators such as crossover and mutation. In PSO, the potential solutions, called 

particles, fly through the solution space by following the current optimum particles.  

PSO is initialized with a group of random particles (solutions) and then searches for 

optima by updating generations. In one iteration, each particle is updated by following two 

"best" values. The first one is the best solution (fitness) it has achieved so far. (The fitness 

value is also stored.) This value is called Pbest. Another "best" value that is tracked by the 

particle swarm optimizer is the best value, obtained so far by any particle in the population. 

This best value is a global best and called Gbest. When a particle takes part of the 

population as its topological neighbors, the best value is a local best and is called Lbest. 

Assuming a physical n-dimensional searching space, the position and velocity of 

individual i are represented as the vectors ( )1, ,i i inX x x= K , and ( )1, ,i i inV v v= K , 

respectively, in the PSO algorithm. Let ( )1 ,Pbest Pbest
i i inPbest x x= K , 

and ( )1 , ,Gbest Gbest
i i inGbest x x= K , respectively, be the best position of individual i and its 
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neighbors’ best position so far. Using the information, the updated velocity of individual i is 

modified under the following equation in the PSO algorithm: 

1
1 1 2 2*( ) *( )k k k k k k

i i i i i iV V c rand Pbest X c rand Gbest Xω+ = + − + −       (13) 

Where: 

.iteration  until group  theofpositon best  

;iteration  until  individual ofpositon best  

;iteration at   individual ofposition  

1; and 0between  numbers random ,
factors; weight ,

parameter;   weight 
;iteration at   individual of velocity 

2

21

kGbest

kiPbest

kiX

randrand
cc

kiV

k
i

k
i

k
i

1

k
i

ω

 

Each individual moves from the current position to the next one by modified velocity 

(13) using the following equation: 

1 1k k k
i i iX X V+ += +              (14) 

Particles' velocities on each dimension are clamped to a maximum velocity Vmax. If 

the sum of accelerations would cause the velocity on that dimension to exceed Vmax, which 

is a parameter specified by the user. Then the velocity on that dimension is limited to Vmax. 
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CHAPTER 3. ECONOMIC DISPATCH WITH COMBINED CYCLE UNITS 
 

3.1 Introduction 

The economic dispatch (EDC) function allocates total demand among the available 

generating units to minimize the total cost of generation. This activity can be executed on a 

minute-by-minute basis at a control center of utilities or Independent System Operator (ISO) 

in the world [3]. The general procedure is shown in Fig. 6. The system operators know cost 

of each unit and are able to control generating facilities to produce predetermined quantities. 

Cost curves of conventional thermal units can be modeled as quadratic convex functions. 

Equal incremental cost is criteria to solve the traditional EDC problem [53]. Competitive 

market forces GENCOs to apply novel technologies such as Combined Cycle (CC), 

Integrated Gasification Combined Cycle (IGCC), Fuel Switching/Blending, 

Constant/Variable Pressure, Overfire, and Dual Boiler etc. in stead of only thermal units to 

pursue profits. CC units utilize both gas turbines and steam turbines to produce electrical 

energy. The waste heat from the combustion turbines is directed into a boiler just as steam 

from the boiler is used to drive steam turbines. An illustration on CC units is shown in Fig. 

5. CC units are of relatively high efficiency, have fast ramp rates and exhibit other 

beneficial features compared to conventional thermal units [54]. This has enabled the CC 

units to become the technology of choice for many new power facilities wherever natural 

gas is affordable.  
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Figure 5:  A Combined Cycle Unit with Single Gas Turbine and Single HRSG 

However, EDC involving CC units is characterized as a non-convex optimization 

which is difficult, even impossible to solve by conventional methods. Many electric utilities 

prefer to represent their generator cost functions as single or multiple linear segment. 

Conventional EDC problems with piecewise linear cost functions can be solved by linear 

programming. Sheble [55] proposed a real-time economic dispatch algorithm - Merit Order 

Loading (MOL) based on the theory of linear programming which is very fast and efficient. 

Ongsakul [56] made a modification for MOL and sorted CC units based on the unit 

incremental cost at the highest outputs, but an example with only CC units was provided. 

Arroyo et al. [57] proposed to use piecewise linear approximation to solve EDC with 

nonconvex functions, the decision variables are generation levels of a block given the slope. 

The idea in [58] is to apply a stepwise function to approximate a nonlinear curve and 

transform a nonlinear programming to a mixed integer linear programming (MILP) 

formulation. Heuristic algorithms are also very popular to solve non-convex optimization. 



www.manaraa.com

 

 

32

 

Sheble et al. [59] proposed a refined genetic algorithm (RGA) method to solve EDC 

problems with non-convex cost curve considering valve point effects. Yang et al. [51] 

implemented an evolutionary programming for non-smoothing fuel cost functions. Wong 

[60] et al. proposed an evolutionary programming-based algorithm for EDC with 

environmentally constraints. Park et al. [61] presented a modified particle swarm 

optimization to solve EDC with multiple fuels.  

 

Figure 6:  EDC within an Integrated Utility 

This chapter first explains cost functions of combined cycle units; second proposes 

several novel algorithms including a Hybrid Technique (HT), two MILP formulations, and 

GA/EP/PS for EDC with combined cycle units; third, a mutation prediction technique is 

proposed to improve the efficiency of GA. Furthermore, the trajectory and searching path 

of each artificial life technique is shown and compared generation-by-generation in Chapter 

Five. 
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3.2 Combined Cycle Units Cost Curve 

Typically, a combined cycle unit consists of several combustion turbines (CTs) and 

an HRSG/steam turbine (ST) set. Based on different combinations of CTs and STs, a 

combined cycle unit can operate at multiple configurations. Each combination of CTs and 

STs can be regarded as a state. Each state has its own unique cost characteristic. The heat 

rate of a modern CC unit varied from 9.0 to 11.1 GJ/MWH (8.5 to 10.5 MBTU/MWH). 

However the heat rate of a combustion turbine is about 15.8 GJ/MWH (15 MBTU/MWH) 

[62]. The EDC problem assumes that the state of a combined cycle unit is known aforehand 

and may be decided by unit commitment (UC) program.  

Assuming a combined cycle unit consists of two combustion turbines and one 

HRSG/steam turbine [63]. All configurations are shown in Table 5: 

Table 5: The States of a Combined Cycle Unit 

State Composition Min Power Max Power 
1 1 CT P1min P1max 
2 2 CT P2min P2max 
3 1 CT + 1 ST P3min P3max 

4 2 CT + 1 ST P4min P4max 

P (MW)

State
 2

Sta
te 1

State 3

State 4La
m

bd
a 

($
/M

W
H

)

 

Figure 7:  Incremental Cost Curves of a CC Unit 
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The incremental cost curves of state 3&4 are not monotonically increasing with 

generation and are depicted in Fig. 7. Lambda represents incremental cost ($/MWH), which 

is marginal cost of a unit, too. 

Table 6: The States of a Combined Cycle Unit 

State 1 State 2 State 3 State 4 

MW $/H MW $/H MW $/H MW $/H 

60 5026  120 10051 95 5026 190 10051 

90 6084  180 12167 145 6084 290 12167 

110 6771  220 13542 168 6771 335 13542 

130 7602  260 15203 189 7602 378 15203 

150 8469  300 16939 210 8469 420 16939 

170 9390  340 18780 245 9390 490 18780 

180 9903  360 19806 265 9903 530 19806 

200 10876 400 21752 295 10876 590 21752 
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Figure 8:  Piecewise Linear Cost Curves of a CC unit 
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Breakpoints of piece-wise linear cost curves of a CC unit are shown in Table 6. For 

the sake of simplicity, capital “H” represents “Hour”. Four piecewise linear cost curves of 

the CC unit are shown in Fig. 8. State 1&2 essentially are thermal unit states. 

Correspondingly, cost curves are monotonously increasing and convex. The curves labeled 

by “State1” and “State2” in Fig. 8 confirm the assertion. However, the curves labeled by 

“State3” and “State4” are monotonously increasing, but not convex any more for they are 

combined cycle unit states. 

3.3 EDC Problem Formulation with CC Units 

The classical EDC problem formulation is as follows: 

Minimize: ( )
1

n

i i
i

F f P
=

=∑            (15) 

Subject to: 
1 1

( ) 0
n n

i D i i D
i i

i i

i i

P P g P P P

P P

P P

= =

= ⇒ = − =

≥

≤

∑ ∑
      (16) 

Where: 

 

: generation of unit 
: cost of unit 
: total cost of  units
: total demand

: generation lower limit of unit 
: generation upper limit of unit 

: the number of units

i

i

D

i

i

P i
f i
F n
P
P i
P i
n

 

When each individual cost curves fi(Pi), i=1,…,n, are convex, the objective function 

is also convex, because the summation of convex functions is also a convex function. Since 
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all constraints are linear (Convex Programming), the Karush-Kuhn-Tucker condition 

guarantees that the problem has only one global minimum. 

We form the Lagrange function as follows: 

1
( ) ( )

n

i i D
i

L F P P Pλ
=

= − −∑            (17) 

This fact allows us to find the solution by applying first-order necessary conditions, 

which are in this case: 

1

( )0 ,    1,...,

0 0

i i

i i

n

i D
i

f PL i n
P P
L P P

λ

λ =

∂∂
= ⇒ = =

∂ ∂

∂
= ⇒ − =

∂ ∑
         (18) 

Inequality constraints may be handled by checking whether the resulting solution is 

against them, and for any violation, setting up another equality constraint which binds the 

given decision variable to the limit which was violated. 

If neither of the inequality constraints is binding, then ( )i i

i

f P
P

λ∂
=

∂
 induces the 

“equal incremental cost criterion” which is a simple and powerful rule to solve traditional 

ED problem. 

Again, because F is convex and g is linear, we can assure a unique minimum 

solution will be found. 

However, given combined cycle units’ characteristics, the traditional EDC 

algorithms as shown before may fail to find the minimum solution. These points, which 

satisfy first–order necessary conditions, may be minimum points, or maximum points, or 

saddle points. For example: consider the break points of state 4 in Table 6 (column 7 and 8), 
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a curve fitting is done to approximate the cost function by a 4th polynomial function. The 

polynomial function is shown by (19): 

4 3

2

( )  0.0000011850 - 0.0020019

1.2175 - 282.07 31892

f P P P

P P

= +

+
        (19) 

Both breakpoints and fitting function are shown in Fig. 9. 

 

Figure 9:  Breakpoints and Approximated Cost Function of a CC Unit 

Assume that two identical CC units with the same approximated 4th order 

polynomial cost functions f are connected to a demand of 800 MW. 

The EDC problem can be simply expressed as below: 

Minimize: ( ) ( )1 2F f P f P= +           (20) 

Subject to: 

1 2

1

2

800
190 590
190 590

P P
P
P

+ =
≤ ≤
≤ ≤

              (21) 

Where f is defined by (19). 
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If both cost functions of the two units are convex, the optimal solution should be 

symmetric, i.e. P1 = P2 = 400 MW. However, the symmetric solution is a local maximum in 

this case. Equal lambda criterion gives a wrong answer. 

 

 

Figure 10:  Six 3-D Contour Lines of Total Cost Function 

Fig. 10 shows the objective function F with respect to P1 and P2 in a 3-dimension 

fashion. Six contour lines are sketched on the surface, they are 24008, 27898 31221, 32159, 

35678, and 39568. Fig. 11 shows the projections of six contour lines on ground level. It is 

clearly seen that the total cost becomes larger and larger from southwest to northeast. 

Finally, the equality constraint needs to be taken care. In a 3-D solution space, the 

equality constraint represents a plane, which is perpendicular to the ground level at the 

straight line 1 2 800P P+ = . Fig. 12 shows the projection of the constraint on the ground 

level. It is observed that there are two contour lines tangent to the constraint. They are 

contour line 31221 and 32159. Since the objective function is going to increase from 
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southwest to northeast, the symmetric tangent point (400, 400) should be a local maximum. 

However, there are two local minima: (259, 541) & (541, 259), which are marked in Fig. 12. 

According to the example, we find an interesting issue that even though two CC units are 

exactly identical, they may dispatch differently at the optimal solution. That is because of 

the non-convexity of cost functions. 

 

Figure 11:  Six 2-D Contour Lines of Total Cost Function 

 

Figure 12:  Local Minimum and Maximum of the Two-CC Units Example 
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3.4 Comparison of Solution Methods 

3.4.1 Complete Enumeration 

Complete enumeration means to search every possible solution within a feasible 

region to find the optimal one. The searching scheme is shown in Fig. 13. The basic idea is 

to discretize generation level of each unit, sequentially change generation output of one unit 

while keeping all of others constant until all of possible trials are examined. The algorithm 

will seek the minimal cost within all feasible solutions.  

 

Figure 13:  Searching Scheme of Complete Enumeration 

Procedure: 

Assume totally (N+M) units (N thermal units and M CC units) participate in 

economic dispatch. Set demand = D. Delta is the step size of the changing of generation; 

Set i=1, j=0; 

If i > N+M, go to step 7; 

For unit i, set Pi = Pi, min + j*Delta, if Pi > Pi, max, go to step 6;  

if 
1

N M

i
i

P
+

=
∑  = D, store Pi and go to step 6; otherwise j = j + 1, go to step 4; 
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i = i + 1, go to step 3; 

Within all of the solutions, select the lowest total cost and corresponding generation 

of each unit as the optimal solution. 

3.4.2 Merit Order Loading 

Merit order loading [55] is a fast algorithm for conventional EDC with thermal units. 

The process is to sort the unit-segments into ascending sequence by breakpoints of 

piece-wise linear incremental cost curves. The monotonously decreasing segments of 

incremental cost curves of combined cycle units could be handled. Reference [56] applied 

the original merit order loading method to CC units by ordering unit-segments at the 

highest/lowest outputs. Clearly, this approach is only an approximate method. 

An illustration of the unit dispatching sequence of four combined cycle units has 

been shown in Fig. 14. 

 

 

Figure 14:  Dispatching Sequence of CC units by MOL 

Procedure: 
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Assume totally N thermal units and M CC units participate in economic dispatch. Set 

demand = D; 

Sort the unit-segments into ascending sequence by upper breakpoint of piece-wise 

linear ICs of thermal units; 

Sort monotonous increasing sections of piece-wise linear ICs of CC units into 

ascending sequence by upper breakpoint; 

Sort monotonous decreasing sections of piece-wise linear ICs of CC units into 

ascending sequence by maximal generation point (minimal incremental cost); 

Dispatch the unit-segment by adding each incremental unit-segment generation into 

the total generation; 

Increment the unit-segment index until all demand D is met. 

3.4.3 Hybrid Technique 

The hybrid technique originates from the idea that convex thermal units and CC 

units can be divided into two different groups, for conventional units group, convex 

optimization methods such as Lambda Iteration are applied; for CC units, Complete 

Enumeration is applied. This proposed technique combines Lambda Iteration with 

Complete Enumeration is shown in Table 7. Lambda Iteration is able to find the optimal 

cost for thermal units part as well as Complete Enumeration for CC units part. The global 

optimum can be reached whatever the order of the CC units considered within the algorithm 

is. Essentially HT is to build a composite generation cost function for all of thermal units, 

then apply CE to solve a lower dimension non-convex optimization. 
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Table 7: Illustration of Hybrid Technique 

Conventional 
Units 

 CC Units  Total 

Lambda 
Iteration 

 Complete 
Enumeration

 Solution 

Generation 
Sum 

+ Generation 
Sum 

= Generation 

Cost Sum + Cost Sum = Cost 
Demand 
served 

+ Demand 
served 

= Demand 

 

Procedure: 

Assume totally N thermal units and M CC units participate in economic dispatch. Set 

demand = D, i = 0 and P0 is the summation of generation lower limit of all M CC units, 

PΔ is step size of the changing of generation; 

Calculate the cost of all of CC units with demand P = P0 + i * PΔ  by Complete 

Enumeration. If P > the summation of generation upper limit of all M CC units, go to step 

6; 

Using Lambda Iteration to dispatch generation (D – P), and calculate the cost of each 

thermal unit; 

Calculate the total cost of CC units and thermal units; 

i = i + 1, go to step 2; 

Find the minimal total cost among all of the solutions, it is the optimal solution. 
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3.4.4 Mixed Integer Linear Programming Model 

3.4.4.1 Linear Programming Formulation 

Assuming there are two thermal units and one CC unit to participate in economic 

dispatch, each unit is represented by a two-segment piece-wise linear cost curve. Thermal 

unit has a convex cost curve while CC unit has a concave cost curve. Cost curves of these 

three units are shown in Figure 15, 16 and 17: 

Generation P1 (MW)
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Figure 15:  Cost Curves of # 1 Thermal Unit 
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Figure 16:  Cost Curve of # 2 Thermal Unit 
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Figure 17:  Cost Curve of # 3 CC Unit 

A nonlinear function can be approximated with a series of piecewise linear segments. 

In Fig. 15, the variables P11 and P12 represent generation increments that range from 0 to 

some maximum values P11,max and P12,max, respectively. 

Thus, we have that 

11 11,max

12 12,max

0    
0   

P P
P P

< <

< <
 

And 

1 1min 11 12P P P P= + +  

Let’s denote the slope of each one of the line segments as s11 and s12, respectively. 

Then the increment in cost function f1 corresponding to each line segment is given by  

ˆ

ˆ
11 11 11

12 12 12

f = s P

f = s P

Δ

Δ  

So the cost function can be approximated using the line segments, and that 

approximation may be improved to any desired level by increasing the number of line 

segments used. 
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Let’s denote the approximate cost function as 1̂f , which can be expressed as a 

function of the new variables Pij, according to: 

1̂f (P11, P12) = f1(P1min)+s11P11+s12P12 

By the same way, cost curves of unit # 2 and # 3 can be represented by piecewise 

linear functions. 

2̂f (P21, P22) = f2(P2min)+s21P21+s22P22 

21 21,max

22 22,max

2 2min 21 22

0   
0   

P P
P P

P P P P

< <

< <

= + +

 

And 

3̂f (P31, P32) = f3(P3min)+s31P31+s32P32 

31 31,max

32 32,max

3 3min 31 32

0   
0   

P P
P P

P P P P

< <

< <

= + +

 

An important observation is, to thermal unit # 1 & # 2, s11 < s12 and s21 < s22 because 

of convexity of cost curves. The property guarantees to give the highest priority to using Pi1 

when increasing Pi from Pimin, the next highest priority to using Pi2, and so on if minimizing 

îf . 

However, to CC unit # 3, it is not be guaranteed to give the highest priority to using 

P31, the next highest priority to using P32, and so on when minimizing 3̂f , because of 

concavity of cost curves. Therefore a special constraint needs to be added: [64] 

P31 < P31,max ⇒  P32 = 0 
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This equation can be re-written as below: 

(P31 - P31,max) * P32 = 0  

Which assures P32 = 0 whenever P31 < P31,max 

Therefore, the optimization problem can be re-written as follow: 

min F̂ = s11P11+s12P12+ s21P21+s22P22+s31P31+s32P32  

s.t.   

11 11,max

12 12,max

21 21,max

22 22,max

31 31,max

32 32,max

11 12 21 22 31 32 1min 2min 3min

31 31,max 32

0
0
0
0
0
0

( )
(  -  ) *    0

D

P P
P P
P P
P P
P P
P P

P P P P P P P P P P
P P P

< <

< <

< <

< <

< <

< <

+ + + + + = − + +
=

 

The minimal cost should be equal to  

2 3
ˆ ˆ ˆ
1 1min 2min 3min 11 11 12 12 21 21 22 22 31 31 32 32f (P ) + f (P ) + f (P ) + s P + s P + s P + s P + s P + s P  

The outputs of units should be  

1 1min 11 12

2 2min 21 22

3 3min 31 32

P P P P
P P P P
P P P P

= + +
= + +
= + +

 

3.4.4.2 Mixed Integer Linear Programming Formulation (I) 

In order to drop the special constraint, one has to bring in some integer variables. To 

CC unit # 3, it is not be guaranteed to give the highest priority to using P31, the next highest 
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priority to using P32, and so on when minimizing 3̂f , because of concavity of cost curves. 

A special constraint needs to be added: 

P31 < P31,max ⇒  P32 = 0 

We can bring in an integer variable to reformulate the special constraint. Denote by 

M as a large enough positive number, y1 is a binary variable with a value 0 or 1. 

The special constraint can be changed into two equations: [65] 

32 1

31 31,max 1

  
   (   1)

P My
P P M y

≤
− ≥ −

 

It is clear that if P31 < P31,max then y1 = 0, P32 ≤ 0; if P31 ≥ P31,max then y1 and P32 

are unrestricted. 

With the two new constraints, the optimization problem can be re-written as follow: 

min F̂ = s11P11+s12P12+ s21P21+s22P22+s31P31+s32P32 

s.t.   

11 11,max

12 12,max

21 21,max

22 22,max

31 31,max

32 32,max

11 12 21 22 31 32 1min 2min 3min

32 1

31 31,max 1

0
0
0
0
0
0

( )
  
   (   1)

D

P P
P P
P P
P P
P P
P P

P P P P P P P P P P
P My
P P M y

< <

< <

< <

< <

< <

< <

+ + + + + = − + +

≤
− ≥ −

 

M is a large positive number 

y1 = 0 or 1 
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This is a Mixed Integer Linear Programming model, which can be solved by 

Branch-and-Bound algorithm. 

3.4.4.3 Mixed Integer Linear Programming Formulation (II) 
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Figure 18:  Breakpoints of # 1 Thermal Unit 
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Figure 19:  Breakpoints of # 2 Thermal Unit 

 
In section 3.4.4.2, it is necessary to assign a large positive number M for the 

algorithm. Sometimes, the improper M value will affect the precision of the algorithm. So 
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an alternative mixed integer linear programming model is proposed without assigning M 

value [66]. 

Figure 18, 19, 20 show all of breakpoints on cost curves of unit 1, 2, 3. 
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Figure 20:  Breakpoints of # 3 CC Unit 

Denote all of breakpoints of cost curves as follows 

1 11 11

1 12 12

1 13 13

2 21 21

2 22 22

2 23 23

3 31 31

3 32 32

3 33 33

( )
( )
( )
( )
( )
( )
( )
( )
( )

f p f
f p f
f p f
f p f
f p f
f p f
f p f
f p f
f p f

=
=
=
=
=
=
=
=
=  

Define 3 real variables x11, x12, and x13 within the interval [0,1], the cost function of 

thermal unit # 1 can be expressed as below:  

~

1 11 11 12 12 13 13f = x f + x f + x f  

1
~ 0

11 12 13

11 13

x + x + x =
x x ≥  



www.manaraa.com

 

 

51

 

 

Similarly, define 3 real variables x21, x22, and x23 within the interval [0,1], the cost 

function of thermal unit # 2 is expressed as below:  

~

2 21 21 22 22 23 23f = x f + x f + x f  

1
0

21 22 23

21 23

x + x + x =
x ~ x ≥  

 

Then define 3 real variables x31, x32, and x33 within the interval [0,1]; 2 binary 

variables y31, y32, the cost function of CC unit # 3 can be expressed as below:   

~

3 31 31 32 32 33 33f = x f + x f + x f  

31 33

0
0

0
1
1

~ 0
0 1

31 31

32 31 32

33 32

31 32 33

31 32 33

31 32

x - y
x - y - y
x - y
y + y + y =
x + x + x =
x x
y , y = or

≤
≤

≤

≥

 

 

With the notations above, the optimization problem can be re-written as follow: 



www.manaraa.com

 

 

52

 

11 11 12 12 13 13 21 21 22 22 23 23 31 31 32 32 33 33

11 12 13

21 22 23

31 32 33

31 31

32 31 32

33 32

31 32 33

11 11 12 12 13 13 21 21 22 22 23 23 31

. .
1
1
1

0
0

0
1

minF x f x f x f x f x f x f x f x f x f
s t
x x x
x x x
x x x
x y
x y y
x y
y y y
x p x p x p x p x p x p x

= + + + + + + + +

+ + =
+ + =

+ + =
− ≤
− − ≤
− ≤

+ + =
+ + + + + +

%

31 32 32 33 33

31 32

0

, 0 1
1,2,3
1,2,3

D

ij

p x p x p P
x

y y or
i
j

+ + =
≥

=
=
=

 

 

Since the generation level for each unit is represented as a combination of all its 

breakpoints, the maximal and minimal generation limit are automatically satisfied. 

Therefore, the maximal and minimal generation limit constraints can be deleted. This model 

can be solved by Branch-and-Bound algorithm. 

3.4.5 Genetic Algorithm – Mutation Prediction 

Mutation is an important operator. In SGA, the random number generator needs to 

be called each time for each bit to decide whether to carry out mutation operation or not. By 

reducing the number of times that the random number generator is called, computing time 

can be minimized. This is the motivation of mutation prediction. 

In order to understand the mechanism of mutation prediction, two strategies need be 

compared. Assume there are totally m bits in one-generation chromosomes. 
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First strategy: for each bit, toss a coin. If head, mutate; otherwise do not mutate. 

Assume the probability of head is Q, the probability of tail should be 1-Q, i.e. Q represents 

the probability of mutation of each bit. 

Define a random variable X which is the number of heads (mutations) in m trials. We 

know X satisfies Binomial Distribution. 

Prob( ) (1 )
0,1,...

k k m k
mX k C Q Q

k m

−= = −
=

          (22) 

The expected value of X is 

( )E X mQ=               (23) 

Which means the average number of mutations in m bits is mQ. 

Second strategy: for the same case of tossing a coin above, define another random 

variable Y which is the number of trials when head (mutation) first appears. We know Y 

satisfies Geometric Distribution. 

1Prob( ) (1 )
1,2,...,

hY h Q Q
h m

−= = −
=

           (24) 

The expected value of Y is 

1( )E Y Q=               (25) 

Which means the average number of trials when head first appears is 1
Q . 

Therefore within m bits, the average number of heads (mutations) is  

1( )
m m mQ

E Y Q
= =              (26) 
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It is easy to find equation (23) and (26) give the same result. However, the second 

strategy calls random number generator only one time, whereas, the first one calls random 

number generator one time per bit. 

Therefore, mutation prediction should be carried out as follows: with 1
Q  as the 

expectation parameter, randomly generate a series of numbers satisfying Geometric 

Distribution. These random numbers indicate positions of bits which need to be mutated. 
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CHAPTER 4. SUPPLY FUNCTION EQUILIBRIUM 
 

4.1 Market Structure 

GENCOs’ optimal bidding strategies are related to actual market structure and 

market rule. Although there are other market mechanism designs, a power pool with 

uniform non-discriminatory pricing is popular and has been used in many electricity 

markets around the world. In this chapter, we only consider this pool-type energy market.  

The market rules are assumed as follow: Every morning GENCOs are required to 

submit a series of bidding functions for the following T periods of the next day. T can be 24 

or 48 etc, which indicates a day-head market trading is considered. After a market clearing 

mechanism, maximizing social welfare, is run by ISO, each GENCO is informed of the 

market price and awarded MW quantity for every period t. Then GENCOs can settle with 

ISO and calculate their profit/loss for the next day. A particular point should be mentioned 

is that if transmission congestion is not considered (Section 2.3), the market clearing price 

is the same for all players. In this case, market clearing condition is equivalent to 

maximizing social welfare. An integrated buyer is assumed with a linear demand function 

for each time t. However, if transmission congestion is incorporated (Section 4.3), the 

prices are usually different to players who are located at different nodes. A set of linear 

demand functions are assumed for loads at different location. In both of cases, the market 

rule is implemented by a single side auction i.e. GENCO’s side auction only.  

4.2 SFE with Multiple Periods 

Notation: 
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t: index of time periods; t = 1, 2, … , T; T: the number of time intervals; 

i: index of GENCOs; i = 1, 2, … , I; I: the number of GENCOs; 

Pt: market clearing price at t; 

Qt: integrated demand at t; 

qit:: generation of GENCO i at t; 

lit: GENCO i’s decision variable (the intercept of supply function, i.e. lit – 

parameterization) at t; 

Market clearing condition at t: Qt=
1

I

it
i

q
=
∑ ; 

Integrated demand curve at t: Pt = ht – gtQt (gt>0); 

GENCO i’s bidding function (supply function) at t: Pt = lit + kiqit  (ki>0); 

GENCO i’s cost function at t: ( )2( ) +0.5 ,   0i it i it i it iCost q q qα β β= > ; 

GENCO i’s profit function at t: 2( ) -0.5t
i it t it i it t it i it i itL Pq Cost q Pq q qπ α β= = − = − ; 

GENCO i’s internal state variable (such as inventory level of fuel) at t: Xit; Xi1 is 

given ∀ i ∈  I; 

GENCO i’s salvage value of fuel at the end of the time horizon T: i i iTXφ γ= , XiT is 

unknown, i.e. “free final state”; 0iγ >  known; iγ  can be assumed to be the 

future/forward price of fuel (for thermal units); 

GENCO i’s heat rate: 2( ) ( ) ( +0.5 )i it i i it i i it i itH q Cost q q qδ δ α β= = ; iδ  can be assumed 

to be the reciprocal of fuel cost; 

GENCO i’s internal state dynamics: 2
1 ( +0.5 )t

i it it i i it i itf X X q qδ α β+= = − ; 
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As discussed in section 2.3, lit – parameterization is more proper than kit – 

parameterization for a SFE model with multiple periods. Therefore, lit – parameterization 

will be analyzed in the rest of the study. 

In a multiple period model, GENCO i faces a multi-stage decision making problem. 

The objective function switches to maximize its total profit over a certain time interval T, 

not at a time point t, plus the salvage value of physical resources left at the end of T. 

Another distinct change from a single period model is that GENCO i has to satisfy its 

inter-temporal internal physical resource constraint, which could be reservoir level of a 

hydro unit or fuel inventory of a thermal unit or a physical contract (Take-or-Pay fuel 

contract) etc. A multi-stage decision making problem of GENCO i is shown in Fig. 21. 

 

Figure 21:  GENCO i Multi-stage Decision Making Problem 

Therefore, the basic problem of SFE with multiple periods is that given a certain 

amount of physical resource; find a series of GENCO i’s optimal bidding functions over a 

time of periods T, which maximize GENCO i’s inter-temporal profit. 

From GENCO i’s point of view, Hobbs etc. defines a “mathematical program with 

equilibrium constraints” (MPEC), which is a two-level constrained optimization problem 

[24]. The second level problem is that ISO maximizes the social welfare by determining the 
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quantity and price of each GENCO given their “virtual” cost functions/supply functions 

bidding. The first level problem is that GENCO i maximizes its profit by choosing the 

parameters of supply function given the quantity and price determined in the second level 

problem. A penalty interior point algorithm (PIPA) is proposed to solve the single 

GENCO’s problem. 

In a game theoretic context, the multi-GENCO problem can be phrased as a SFE, 

each being a dominant GENCO with respect to the ISO, able to predict how the ISO will 

process the bids of all players (Stackberg Game). The main feature of the game is that each 

GENCO is solving a MPEC, rather than a standard optimization problem. In this 

multi-GENCO case, each GENCO is trying to maximize its profits based on what the 

market does as well as what the other dominant GENCOs do. A SFE exists when there is no 

incentive for any GENCO to change its behavior unilaterally [24]. Fig. 22 shows the 

two-level optimization problem. 

 

Figure 22:  2 – level optimization problem at time t 
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Since a multiple period problem is studied in this chapter, a GENCO’s internal state 

constraint should be incorporated into its profit function. For GENCO i, its multiple periods 

problem is: 

1

1
2

1

1

max   ( ) ( , )

. .     ( +0.5 )
           is given

it

T
t

i i iT i it itl t

it it i i it i it

i

J X L l l

s t X X q q
X

φ

δ α β

−

−
=

+

= +

= −

∑
 

From the perspective of GENCO i, it faces a free final state discrete time optimal 

control problem if other GENCOs’ biddings are known. However, normally GENCO i, 

does not know other GENCOs’ bidding. GENCO i’s profit clearly depends on other 

GENCOs’ bidding. A SFE can be defined below. 

A strategies profile { }* , for all 1,..., ,  1,..,itl i I t T= =  is called to constitute a Supply 

Function Nash Equilibrium, if, with this bids *
itl , GENCO i maximizes his payoff 

( ), ,i iT it itJ X l l− , given all of other GENCOs stick to the bid *
itl− . The reasoning must hold 

for i I∀ ∈ .  

It looks like that one must solve totally I discrete time optimal control problems 

simultaneously. However, some nice structures will decouple this problem and make it 

analytically solvable. 

 

First of all, the Hamiltonian function is defined for GENCO i,  

1( , ) ( , , )t t T t
i i it it it i it it itH L l l f X l lλ− + −= +  

where: itλ  is Lagrangian multipliers or costate variables 
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Assuming that the Nash Equilibrium strategy profile does exist. Then first-order 

condition for the discrete time optimal control problem must hold for every player 

simultaneously. Player i’s FOC is given below [67]: 

(State Dynamics) 2
1

1

( +0.5 )
t

ti
it i it i i it i it

it

HX f X q qδ α β
λ+

+

∂
= = = −
∂

 

(Costate Dynamics) 1

t t t
i i i

it it
it it it

H L f
X X X

λ λ +

∂ ∂ ∂
= = +
∂ ∂ ∂

   

0,  1
t t
i i

it it

L f
X X
∂ ∂

= =
∂ ∂

Q   

1 10 1it it itλ λ λ+ +∴ = + =  

(Stationary Condition) 10
Tt t

i i
it

it it

L f
l l

λ +

⎡ ⎤∂ ∂
= + ⎢ ⎥∂ ∂⎣ ⎦

 

(Boundary Condition) i
iT i

itX
φλ γ∂

= =
∂

 

where: 
2

2

( +0.5 )
( +0.5 )

t
i it i i it i it
t
i t it i it i it

f X q q
L Pq q q

δ α β
α β

⎧ = −
⎨

= −⎩
 

 

If combining costate dynamics and boundary condition, one immediately finds that 

the costate variables are constant, i.e.  1,...,it iT i t Tλ λ γ= = ∀ = . Therefore the stationary 

condition is decoupled with respect to time t. We can actually solve the problem 

analytically. 

 

The market clearing condition is given below: 
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1 1

I I
t it t t

it t
i i i t

P l h Pq Q
k g= =

− −
= ⇒ =∑ ∑  

One can obtain the market clearing price and the quantity of GENCO i: 

1

1 1

1

1 1

,    
1 1

I
it t

i i t
itI I

it t

i ii t t it i t
t itI

i i

i i t

l h
k g l

l h
k g P l k gP q

k k
k g

=

= =

=

+
−

+ +
−

= = =
+

∑

∑ ∑

∑
 

Furthermore, one has the first-order derivative of the market clearing price and 

quantity of GENCO i with respect to GENCO i’s decision variable: 

1

2

11 1

1

1
1 1 1

1 1 1,   
1 11 1 1 1

i
I

iit i t t i
it t II I

it i i it
i i

i i ti ii t i t

k

q k g P kq P
l k k l

k kk gk g k g

=

== =

−
+

∂ ∂
= = = − = = =
∂ ∂⎛ ⎞ ⎛ ⎞++ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑

∑∑ ∑
&&

 

Therefore, 

t
i it it

i i i i it i i it i i it it
it it it

t
i it t it it

t it i i it t it t it i it i it it
it it it it it

f q qq q q q
l l l

L q P q qP q q Pq Pq q q q
l l l l l

δ α δ β δ α δ β

α β α β

∂ ∂ ∂
= − − = − −

∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
= + − − = + − −

∂ ∂ ∂ ∂ ∂

& &

&& & &

 

According to the stationary condition: 

10   . .  
Tt t t t

i i i i
it i

it it it it

L f L fi e
l l l l

λ γ+

⎡ ⎤∂ ∂ ∂ ∂
= + = −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 

One can obtain: 
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( ) ( )1

i i i it i i i it it t it t it i it i it it

i i i it i it t it t it i i i it it i it it

i i i it t i i i it i it it t it

q q q Pq Pq q q q

q q Pq Pq q q q q

q P q q q Pq

α δ γ β δ γ α β

α δ γ α β δ γ β

δ γ α β δ γ β

+ = + − − ⇒

+ = + − − ⇒

+ = − − +

&& & & & &

&& & & & &

&& & & &

 

Substituting GENCO i’ supply function into equation: 

( ) ( )1 t it
i i i it t i i i it i it t it

i

P lq P q q Pq
k

δ γ α β δ γ β −
+ = − − +&& & & &  

Doing some rearrangement: 

( ) ( )( )
( ) ( )

( ) ( )1

1

1

1 1

i i i i it t i i i it i it t it i it t

t i i i it i it i it t t i i i it i it it

I
it t

i i t
t i i i it i it i it t i i i it i it itI

i i t

t i i i

k q P q q P l k q P

P q q k q P P q q l

l h
k gP q q k q P q q l

k g

P

δ γ α β δ γ β

β δ γ β β δ γ β

β δ γ β β δ γ β

β δ γ

=

=

+ = − − − +

= − − + − − −

+
= − − + − − −

+

= −

∑

∑

&& & & &

& && & & & &

& && & & & &

& &( ) ( )

( )

1

1 1

1 1 1 1

I
it t

i i t
it i it i it t i i i it i it i itI I

i ii t i t

t i i i it i it it

l h
k gq q k q P q q k q

k g k g

P q q l

β β δ γ β

β δ γ β

=

= =

− + + − − +
+ +

− − −

∑

∑ ∑
&& & & & &

& & &

 

Segregating these terms with GENCOs’ decision variables lit from others terms: 

( ) ( )

( )

1

1 2
1 2

1 1 1 1

1
1 1

11 1 1

1 1 1 1 1 1 1 1

t

t
i i i i it t i i i it i it i it I

i i t

i I
t i i i it i it i it t t it ItI I I I

i i i ii t i t i t i t

t i i i it i i

h
gk q P q q k q

k g

kk k kP q q k q l l l l

k g k g k g k g

P q q

δ γ α βδ γ β

βδ γ β

βδ γ β

=

= = = =

+ − − − +
+

⎛ ⎞
⎜ ⎟
⎜ ⎟= − − + + + + + +
⎜ ⎟+ + + +⎜ ⎟
⎝ ⎠

− − −

∑

∑ ∑ ∑ ∑

&& & & &

& & & & L L

& & &( )t itl
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Define three variables that are not dependent on GENCOs’ decision variables as 

follows: 

( ) ( ) ( )

( ) ( )

1

1 1

1 = 1 ,    
1 1

1 1 ,     
1 1 1 1

t

t t
it i i i i it t i i i it i it i it i i i i it itI

t

i i t

it t i i i it i it i it it i itI I

i ii t i t

it t i i i it i it

h
g hA k q P q q k q k q B

g
k g

B P q q k q C k q

k g k g

C P q q

δ γ α β δ γ β δ γ α

β δ γ β

β δ γ β

=

= =

= + − − − + + −
+

= − − + = +
+ +

= − −

∑

∑ ∑

&& & & & &

& & & & &

& & &

 

Then one has: 

1 1 1 1 1 2 1 1
1 2

2 2 1 2 2 2 2 2
1 2

1 2
1 2

1 2
1 2

1 1 1 1

1 1 1 1

1 1 1 1

1 1

t t t t t t t it t It
i I

t t t t t t t it t It
i I

it it t it t it it it it It
i I

It It t It t

A B C l B l B l B l
k k k k

A B l B C l B l B l
k k k k

A B l B l B C l B l
k k k k

A B l B l B
k k

⎛ ⎞
= − + + + + +⎜ ⎟
⎝ ⎠

⎛ ⎞
= + − + + + +⎜ ⎟

⎝ ⎠

⎛ ⎞
= + + + − + +⎜ ⎟

⎝ ⎠

= + + +

L L

L L

M

L L

M

L
1 1

It it It It It
i I

l B C l
k k

⎛ ⎞
+ + −⎜ ⎟

⎝ ⎠
L

 

It is essentially a linear equation system and can be easily solved. 

1 1 1
1

1 2
1 1

2 2 2
2 2 2

1 2

1 2

t t t
t

I
t t

t t t
t t t

I

It It
It It It

It
I

B B BC
k k k

l A
B B BC l A
k k k

l A
B B B C
k k k

⎡ ⎤−⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥−
⎢ ⎥⎣ ⎦

L

L

M M
M M M M

L

 

The optimal bidding decisions at time t are given as follows: 
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1
1 1 1

1
1 2

1 1
2 2 2

22 2
1 2

1 2

where:  ,  1, 2,...,

t t t
t

I
t t

t t t
tt t

I

It It
It It It

It
I

i i

B B BC
k k k

l A
B B BCl A
k k k

l A
B B B C
k k k

k i Iβ

−
⎡ ⎤−⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥−
⎢ ⎥⎣ ⎦

= ∀ =

L

L

M M
M M M M

L

 

Important observations: 

1. The period t optimal bidding is determined by the parameters at time t only, it 

does not explicitly depend on the previous or future state variables (including initial or final 

states). But it does depend on other rival GENCOs’ decision/bidding. So the optimal 

bidding for all GENCOs will be solved simultaneously. One can solve the T linear equation 

systems respectively in order to obtain the NEs over time periods T. The reason on the 

decoupling is that the costate variables and state variables are decoupled. Furthermore, 

costate variables are constant! The functional form of salvage value is a key point. 

2. The salvage value of fuels does affect GENCOs’ bidding strategies. The impacts 

are represented by the parameter iγ , which is included into Ait, Bit, and Cit. 

3. If state variables have more constraints like non-negativity, a similar decoupling 

situation will be expected. 

4. The model can be easily to extend to include Take-or-Pay fuel (fix final state) 

contracts for some GENCOs. The impact of Take-or-Pay fuel contract on GENCO’s 

optimal bidding can be evaluated. 

5. The decoupling with respect to time is essentially because GENCO i considers its 

positions in both fuel and electricity markets in the proposed model. If only a single 
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electricity market is considered, a normal Riccati-like coupling equation will be expected 

[74]. It is more realistic to assume GENCOs to play in multiple markets than just one 

electricity market. 

6. Another type of decoupling can be easily observed in an electricity market. 

Usually, an electricity market includes three major components: day-ahead, hourly-ahead, 

and real-time. A physical load is served by the scheduling activities of the tree markets. 

However, the three markets are run separately.    

7. Besides the decoupling between the costate and state variables, costate variables 

are constant in the proposed model. It can be explained that in a day-ahead market, 

GENCOs only make estimation for the forward fuel price once when submitting a set of 

bids for multiple periods. Therefore, the costate variables, which are the shadow prices of 

fuel at each time period, are the same with the estimated forward price. The rules of a 

day-ahead market will result in a constant costate variable. However, the result does not 

mean that a multiple-period model is useless compared to a single-period. The estimated 

forward price of fuels does affect GENCOs’ bidding strategies. The impacts are represented 

by the parameter, which is included into Ait, Bit, and Cit. 

 

4.3 SFE with Transmission Congestion 

In section 2.3, transmission network impacts are not incorporated in SFE bidding 

model. It is equivalent to say that all of the transmission lines have infinite large limits. In 

this case, prices are uniform throughout the entire network. However, physically some of 

the transmission lines have finite (or relative low) limits. If power flow hits the limit at one 
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or more such transmission lines, prices will change at different locations that reflects the 

varying cost of transmitting one MW electricity to different locations. The difficulty 

incorporating transmission constraints is that the possible number of transmission 

congestions normally is huge given a large power system with many transmission lines. The 

situation of transmission congestions will vary discontinuously when GENCOs change their 

bidding decisions. Gedra proposed a general way to calculate DC optimal power flow 

sensitivity [68]. Lin Xu etc. [69] and Ross etc. [45] consider a SFE with transmission 

constrained based on DC OPF sensitivity. However, only a kit – parameterization model is 

studied. The information on transmission congestion is regarded exogenous. In other words, 

it is assumed that whether or not a line is going to be binding before GENCOs bidding into 

the market. This section will give a general derivation on SFE with transmission 

congestions as endogenous variables based on DC OPF sensitivity. lit – parameterization 

model will be used. However, usually multiple SFEs (pure and mixed) will exist, which is 

consistent to Ross’s claim in [45]. In order to highlight transmission congestion effects, a 

single period model is considered only. 

Notations: 

Assumption: at most one GENCO and one load at one bus. If there are multiple 

generators or loads at one bus, an artificial generator or load could be defined. 

n: index of buses; n = 1, 2, … , N; N: the number of buses; 

i: index of GENCOs; i = 1, 2, … , I, I: the number of GENCOs; 

j: index of demands; j = 1, 2, … , J; J: the number of loads; 

m: index of transmission lines; m = 1, 2, … , M; M: the number of transmission lines; 

r: index of congestions; r = 1, 2, … , R; R: the number of congestions; 
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Pit: price at the bus corresponding to GENCO i; 

Pjt: price at the bus corresponding to Load j; 

Qjt: demand of Load j at t; 

qit:: generation of GENCO i at t; 

lit: GENCO i’s decision variable (the intercept of supply function, i.e. lit – 

parameterization) at t; 

A: node-arc incidence matrix, M by N; 

B: B matrix in DC power flow, N by N; 

D: susceptance matrix, M by M; 

:  a vector of generation  at ,   by 1t itq t Iq ; 

:  a vector of demands  at ,  by 1t jtQ t JQ ; 

:  a vector of node phase angles,  by 1Nθ ; 

:  a vector of branch power flows,  by 1Mbp ; 

:  a vector of dual variables corresponding to node power balance equations,  by 1Nλ
; 

:  a vector of dual variables corresponding to branch flow equations,  by 1Mμ ; 

:  a vector of dual variables corresponding to transmission congestion lines,  by 1Rγ ; 

:  a vector of node power injections,  by 1Np ; 

:  a vector of branch power flow limits, by 1Mbmaxp ; 
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GENCO i’s supply function is assumed to be a linear increasing function and cost 

function is the integration of supply function: 

( )

( ) 2

  1,  2,  ..., ,   0
1 1
2 2

it it i it i

it it it it it i it it it it i it

P l k q i I k

Cost P dq l l k q q l q k q

= + = >

= = + + = +∫
; 

The shaded area under a supply function in Fig. 23 is GENCO i’s cost; 

itq

itP

 

Figure 23:  GENCO i’s Supply Function and Cost 

Load j’s demand function is assumed to be a linear decreasing function and utility 

function is the integration of demand function: 

( )
( ) 2

  1,  2,  ...,  ,   0

1 1
2 2

jt jt j jt j

jt jt jt jt jt j jt jt jt jt j jt

P h g Q j J g

Utility P dQ h h g Q Q h Q g Q

= − = >

= = + − = −∫
; 

The shaded area under a demand function in Fig. 24 is Load j’s utility. In a 

deregulated electricity market, LSEs are usually assumed to purchase energy on behalf of 

consumers. If retail market is perfectly competitive, i.e. consumers are able to choose LSEs 

freely, the demand of LSEs will reflect the true demand of consumers. 
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jtQ

jtP

 

Figure 24:  Load j’s Demand Function and Utility 

Therefore, the total costs of I GENCOs and total utilities of J Loads are given below: 

Total costs: 

[ ] [ ]
1 1

1
2 22

1 2 1 2
1 1 1

1 1
2 2

1
2

0

0

t t

I I I
t t

it it it i it t t It t t It
i i i

I
It It

T T
t t t t t

q q
k

q q
Cost l q k q l l l q q q

kq q
= = =

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= + = + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

= +

∑ ∑ ∑

l q q k q

L L O
M M  

Total utilities 

[ ] [ ]
1 1

1
2 22

1 2 1 2
1 1 1

1 1
2 2

1
2

0

0

t t

J J J
t t

jt jt jt j jt t t Jt t t Jt
j j j

J
Jt Jt

T T
t t t t t

Q Q
g

Q Q
Utility h Q g Q h h h Q Q Q

gQ Q
= = =

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= − = + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

= −

∑ ∑ ∑

h Q Q g Q

L L O
M M  

Thus the second level problem (ISO maximizes social welfare) is defined as below: 
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( ) ( )

min max

min max

1 1max   
2 2

. .     = 0
          0
          -
          
          

          

T T T T
t t t t t t t t t t

i it i

j jt j

t t

s t

q q q
Q Q Q

− − −

⇒ − + =

= ⇒ − + =

≤ ≤
≤ ≤
≤ ≤

= −

b b

bmax b bmax

h Q Q g Q l q q k q

p Bθ p Bθ
p DA θ p DA θ
p p p

p q Q

 

 

In order to derive a compact model, it is necessary to define a Generator-Bus 

incidence matrix E and a Demand-Bus incidence matrix F, which relate buses to GENCOs 

or Loads: 

Define a Generator-Bus incidence matrix E (I by N) 

          1 2
1 1 0 0 0
2 0 0 0 1

0 1 0 0

N

I

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

E

L

M

 

Define a Demand-Bus incidence matrix F (J by N) 

          1 2
1 0 1 0 0
2 1 0 0 0

0 0 0 1

N

J

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

F

L

M

 

Then the node net injection power flow vector can be expressed below: 

T T
t t= −p E q F Q  

The node power balance equation become: 
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( )0 0T T
t t− + = ⇒ − − + =p Bθ E q F Q Bθ  

Define a matrix S = DA, the branch power flow equation become: 

( ) 0 0− + = ⇒ − + =b bp DA θ p Sθ  

Furthermore, define a Congestion-Line incidence matrix C (R by M), which specifies 

the exact location where congestion occurs. 

          1 2
1 1 0 0 0
2 0 1 0 0

0 0 0 1

M

R

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

C

L

M

 

The Congestion-Line incidence matrix C will give us a lot of flexibility to deal with 

transmission congestions. When the congestion conditions change according to GENCOs’ 

biddings, one just needs to simply modify the matrix C (add or delete or modify a specific 

row of matrix C). The method can handle all kinds of congestions scenarios. 

The transmission congestion constraints are: 

0= ⇒ − =b blimit b blimitCp Cp Cp Cp  Where:  or =blimit bmax bmaxp p - p  

 

Define a Lagrangian function as below: 

( )
( ) ( )

1 1
2 2

T T T T T T T
t t t t t t t t t t t t

T T

= − − − + − +

+ − + −b b blimit

L h Q Q g Q l q q k q λ Bθ E q F Q

μ Sθ p γ Cp Cp
 

The first-order conditions are: 



www.manaraa.com

 

 

72

 

( )

( )

( )

0 0

0 0

0 0

0 0

0 0

0 0

0

T T T T
t t t t t t

t

T T T T
t t t t t t

t

T T T T

T T T

TT T T T
t t t t

T

T

∂
= − − − = ⇒ + + =

∂

∂
= − + = ⇒ − + =

∂

∂
= + = ⇒ + =

∂
∂

= − + = ⇒ − + =
∂

∂
= − + = ⇒ − + =

∂
∂

= − = ⇒ − =
∂
∂

= − = ⇒ −
∂

b

b b

b blimit b

L l q k λ E l k q Eλ
q
L h Q g λ F h g Q Fλ
Q
L λ B μ S B λ S μ
θ
L μ γ C μ C γ
p
L Bθ E q F Q Bθ E q F Q
λ
L Sθ p Sθ p
μ
L Cp Cp Cp
γ

0=blimitCp

 

One can formulate the FOC as a linear equation system as below: 

              
0 0 0 0 0

0 0 0 0 0
00 0 0 0 0
00 0 0 0 0
00 0 0 0
00 0 0 0 0

0 0 0 0 0 0

tt t

tt t
T T

T

T T

I J N M N M R
I
J
N
M
N
M
R

−⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ −− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ =− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥

− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

b

blimit

lk E q
hg F Q

B S θ
I C p

E F B λ
S I μ

CpC γ

     (27) 

 

Define 

t

t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b

q
Q
θ

z p
λ
μ
γ

, 
0
0
0
0

t

t

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦blimit

l
h

ω

Cp

,   

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

t

t
T T

T

T T

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

k E
g F

B S
Φ I C

E F B
S I

C
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We are only interested in the case that equation (27) has a unique solution. Therefore 

it is assumed that matrix Φ is invertible in the rest of the study. 

Define 1−=W Φ , then 

* 1−= ⇒ = =Φz ω z Φ ω Wω           (28) 

Rewrite the matrix form of equation as below: 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

1 1 2 2

n n

n n

v v vn n v

V V Vn n V

z z z
z z z

z z z

z z z

φ φ φ ω
φ φ φ ω

φ φ φ ω

φ φ φ ω

+ + + =
+ + + =

= ⇒
+ + + =

+ + + =

Φz ω

L

L

M

L

M

L

 

One can calculate the sensitivity of the optimal solution with respect to a parameter 

vvφ .  Notice: vvφ  represents a slope parameter. 

( )

1 2
11 12 1

1 2
21 22 2

*

*
1 2

1 2

1 2
1 2

0 0

0
0 0

0

0
0

0

0 0

n
n

vv vv vv

n
n

vv vv vv

n vvv vv
v v v vn

vv vv vv

n
V V Vn

VV VV VV

zz z

zz z

z zz zz

zz z

φ φ φ
φ φ φ

φ φ φ
φ φ φ

φ φφ φ φ
φ φ φ

φ φ φ
φ φ φ

∂∂ ∂
+ + + + =

∂ ∂ ∂
∂∂ ∂ ⎡ ⎤+ + + + = ⎢ ⎥∂ ∂ ∂ ⎢ ⎥

⎢ ⎥∂ ∂
= ⇒ ⇒ = − ⎢ ⎥∂∂ ∂∂ ∂ ⎢ ⎥+ + + + =

⎢∂ ∂ ∂
⎢
⎣ ⎦

∂∂ ∂
+ + + + =

∂ ∂ ∂

Φz zΦ

L

L

M M

L
M

M

L

*
1 * *

v v
vvφ

−

⎥
⎥

∂
⇒ = − = −

∂
z Φ I z WI z

 

Where: vI  is a matrix of the same dimension with Φ , only (v, v) element is 1, 

others are zeros. 
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One can calculate the sensitivity of the optimal solution with respect to a parameter 

vω . Notice: vω  represents an intercept parameter. 

( )*

0
0

1

0

v
v v vω ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∂∂ ∂

= = = =⎢ ⎥∂ ∂ ∂ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Wωz ωW W W1
M

M

 

Where: v1  is a vector of the same number of row with Φ , only v element is 1, 

others are zeros. 

Then one has 
* *

* ,     it it
ii it ii

i it

q qW q W
k l

∂ ∂
= − = −

∂ ∂
, jjW  is the (j, j) element of W . The 

result is given in [45] [69]. 

 

Then, let us consider the first level problem (GENCO maximizes its profit), the FOC 

is 

( )

* * * *
*2 * *

* * *2 *2 * 2

* * * *

0 2 0

2 0

2 0

it it it it it
it it i it it

i i i i i

it ii it ii it it i ii it ii it

it ii ii it i ii it ii it it

q q q ql q k q q
k k k k k

l W q W q q k W q W q

l W W q k W q W q q

ι ι

ι ι

ι ι

π α β

α β

α β

∂ ∂ ∂ ∂ ∂
= ⇒ − + + − =

∂ ∂ ∂ ∂ ∂

⇒ − + + − + =

⇒ − + + − + =

    (29) 

and 

* * * *
* * *

* * *

0 2 0

2 0

it it it it it
it it i it it

it it it it it

it ii ii it i ii it ii it

q q q ql q k q q
l l l l l

l W W q k W q W q

ι ι

ι ι

π α β

α β

∂ ∂ ∂ ∂ ∂
= ⇒ − + + − =

∂ ∂ ∂ ∂ ∂

⇒ − + + − + =

     (30) 

According to both of the two equations, it is easily to find that 0 0it it

it il k
π π∂ ∂

= ⇒ =
∂ ∂

. 
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The fact is consistent with the observation in SFE without transmission constraints 

that one has to assign I unknowns first, then calculate the other I variables under 

equilibrium conditions because there are 2I unknowns ( ),it il k , but only I equations. 

 

Finally, the optimal intercept parameters of supply function will be derived. 

Revisit the equation (28) 

( ) ( ) ( )* * *,     it i ii
q= = = =z Wω z Wω W ω  

One can partition W matrix into to 4 small block matrix and ω  vector into 2 

vectors 

[ ]

(1) (2)

(3) (4)

(1)
(1) (2)

(2)

                

 ,

                1                

0
0

0
0 ,     ,     

0
0

0
0

t
t

t

t

I

I

I

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

−⎡ ⎤
−⎡ ⎤⎢ ⎥− ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥
⎢ ⎥⎡ ⎤⎢ ⎥= = = − = ⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

Blimit
Blimit

W W
W

W W

l
h

h

ω
ω ω l ω

ω

CP
CP

 

Then, for each equation i, one has: 

( ) ( )( ) ( )( ) ( )( ) ( )( )
(1)

1 2 1 2* (1) (2)
(2)it i i i i i

q
⎡ ⎤⎡ ⎤= = = +⎢ ⎥⎣ ⎦ ⎣ ⎦

ω
W ω W W W ω W ω

ω
 

Substituting *
itq  into equation (30) 
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( )

( ) ( )( ) ( )( )
( )( ) ( )( )
( )( )

*

1 2(1) (2)

2 1(2) (1)

2 (2)

0 1 2 0

1 2 0

0
1 2 1 2

1 2 1 2

it
it ii ii i ii ii it

it

it ii ii i ii ii i i

ii ii
iti i

i ii ii i ii ii

ii ii

i
i ii ii i ii ii

l W W k W W q
l

l W W k W W

W W l
k W W k W W

W W
k W W k W W

ι ι

ι ι

ι

ι ι

ι

ι ι

π α β

α β

α
β β

α
β β

∂
= ⇒ − + + − + =

∂

⎡ ⎤⇒ − + + − + + =
⎣ ⎦

⇒ + − + =
− + − +

⇒ + −
− + − +

W ω W ω

W ω W ω

W ω ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
( )( ) ( ) ( )

( ) ( )

1 1
1 21 2

1 1

2 (2)
1 1 2 2

1

2

1 2

0

1 2

0
1 2

1 2

it t ti i

it Itii II

ii
i t i ti

i ii ii

ii
ii it iI It

i ii ii

t

t

ii
i i ii iI

iti ii ii

It

l l l

l l

W W l W l
k W W

WW l W l
k W W

l
l

WW W W W
lk W W

l

ι

ι

ι

ι

α
β

β

β

+ − + −

+ + − + + − =

⇒ + + − + −
− +

⎛ ⎞
+ + + − + + − =⎜ ⎟− +⎝ ⎠

⎡ ⎤
⎢
⎢
⎢⎡ ⎤

⇒ + ⎢⎢ ⎥− +⎣ ⎦ ⎢
⎢
⎢
⎢⎣ ⎦

W W

W W

W ω

L L

L L

M
L L

M

( )( )2 (2)

1 2
ii

i
i ii ii

W
k W W

ι

ι

α
β

⎥
⎥
⎥
= +⎥

− +⎥
⎥
⎥
⎥

W ω
F

ollowing the same procedure for ∀  i = 1, 2, …, I, one can get the linear equation system 

11
11 12 1 1

1 11 11

122
21 22 2 2

2 22 2 22 2

1 2

1 2

1 2

1 2

1 2

1 2

i I

t
i I

t

itii
i i ii iI

i ii i ii

It

II
I I Ii II

I II I II

WW W W W
kW W

lWW W W W
kW W l

lWW W W W
kW W

l
WW W W W

kW W

β

β

β

β

1

⎡ ⎤+⎢ ⎥− +⎢ ⎥
⎢ ⎥⎡ ⎤

+⎢ ⎥⎢ ⎥− +⎢ ⎥⎢ ⎥
⎢ ⎥⎢
⎢ ⎥⎢
⎢ ⎥⎢+⎢ ⎥⎢− +
⎢ ⎥⎢
⎢ ⎥⎢⎣ ⎦
⎢ ⎥
⎢ ⎥+

− +⎢ ⎥⎣ ⎦

L L

L L

MM M O M M M

L L
M

M M M M O M

L L

( )

1 11

1 11 1 11

2 22

2 22 2 22

2 (2)

1 2

1 2

1 2

1 2

ii

i ii ii

I II

I II I II

W
kW W

W
kW W

W
kW W

W
kW W

ι

ι

α
β

α
β

α
β

α
β

⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥
⎢ ⎥− +⎢ ⎥
⎢ ⎥⎥

= +⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥ − +
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥
⎢ ⎥
− +⎢ ⎥⎣ ⎦

W ω
M

M

 

then 
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11
11 12 1 1

1 11 11

1 22
21 22 2 2

2 22 2 222

1 2

1 2

1 2

1 2

1 2

1 2

i I

t
i I

t

it ii
i i ii iI

i ii i ii

It

II
I I Ii II

I II I II

WW W W W
kW W

l WW W W W
kW Wl

l WW W W W
kW W

l
WW W W W

kW W

β

β

β

β

1

⎡ ⎤+⎢ ⎥− +⎢ ⎥
⎢ ⎥⎡ ⎤

+⎢ ⎥⎢ ⎥ − +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

=⎢ ⎥⎢ ⎥
⎢⎢ ⎥ +⎢⎢ ⎥ − +
⎢⎢ ⎥
⎢⎢ ⎥⎣ ⎦
⎢
⎢ +

− +⎢⎣ ⎦

L L

L L

M M M O M M M

L L
M

M M M M O M

L L

( )

1
1 11

1 11 1 11

2 22

2 22 2 22

2 (2)

1 2

1 2

1 2

1 2

where:  ,  1,2,...,

ii

i ii ii

I II

I II I II

i i

W
kW W

W
kW W

W
kW W

W
kW W

k i I

ι

ι

α
β

α
β

α
β

α
β

β

− ⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥− +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥− +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟+⎢ ⎥
⎜ ⎟⎥ ⎢ ⎥
⎜ ⎟⎥ ⎢ ⎥− +⎜ ⎟⎥ ⎢ ⎥
⎜ ⎟⎥ ⎢ ⎥
⎜ ⎟⎥ ⎢ ⎥
⎜ ⎟⎥ ⎢ ⎥
⎜ ⎟− +⎥ ⎢ ⎥⎣ ⎦⎝ ⎠

= ∀=

W ω
M

M

 

By solving the equation, the optimal bidding parameter at equilibrium will be 

obtained. 

Important observation: 

1. Assuming that there are R out of total M transmission lines that have transmission 

limits. However, the other M – R transmission lines are assumed to have (relative) infinite 

large transmission limits. The result tells us that the SFE without congestion may or may 

not exist. 

2. The existence of SFE with R, R-1, R-2, …, 1 lines congestion and uncongestion 

can be tested by checking whether the power flow on specific lines exceeds corresponding 

limits after the second level optimization problem without transmission congestions being 

solved. 

3. If more than two pure strategies SFEs exist, there may be mixed strategies SFEs 

exist, too. 

4. In practice, system operators would like to avoid transmission congestions. If 

transmission congestions happen, the system becomes insecure. Some small disturbances 

may cause a large system outage. A direct method is to upgrade transmission lines if there 
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is no uncongestion equilibrium existing in the original system. The result tells us that the 

corresponding transmission limits need to be increased to a certain level so that an 

uncongestion equilibrium exist. 

5. The interesting fact is that system operators always prefer uncongestion or less 

congestion SFEs (if exist), however, GENCOs may not agree with them. 

6. In reality, the existence of R lines congestion is also affected by price cap and 

production limit constraints. However, this model does not incorporate these factors. 

General Procedures: 

1. Given an electric power system, one can find some critical transmission lines 

where congestions often happen according to historical records. Assuming that there are 

such R transmission lines out of total M. However, the other M – R transmission lines are 

assumed to have (relative) infinite large transmission limits. 

2. Set r = 0. 

3. Calculate the SFE with R – r lines congestions. 

4. After getting the optimal bids *
itl , plug back into the second level problem without 

transmission congestions, check whether branch flows on the r lines is over transmission 

limits. If yes, the SFE with (R – r)-line congestion exist; Otherwise, does not exist. 

5. r = r + 1, if r > R go to step 6; Otherwise go to step 3. 

6. Output these existing pure SFEs. 

7. If more than one pure SFEs existing, then there may be some mixed SFEs exist. 

Calculate these mixed SFEs. 
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4.4 A Two-bus Case with Transmission Congestion 

In order to show the feasibility of the proposed method, a two-bus case is constructed. There 

is only one line, the transmission limit is 12 21&p p . 

1 2

12p

21p
1D 2D

1G 2G

 

Figure 25:  One Line Diagram of a Two-Bus System 

 

GENCO i’s supply function is assumed to be a linear increasing function and cost 

function is the integration of supply function: 

( )

( ) 2

  1,  2,   0
1 1
2 2

it it i it i

it it it it it i it it it it i it

P l k q i k

Cost P dq l l k q q l q k q

= + = >

= = + + = +∫
 

Load j’s demand function is assumed to be a linear decreasing function and utility 

function is the integration of demand function: 

( )
( ) 2

  1,  2,   0

1 1
2 2

jt jt j jt j

jt jt jt jt jt j jt jt jt jt j jt

P h g Q j g

Utility P dQ h h g Q Q h Q g Q

= − = >

= = + − = −∫
 

Define a series of constants and matrix below: 

I = 2, J = 2, N = 2, M = 1, R = 1 
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[ ] [ ] [ ]

[ ]

12 12
12 12 12

12 12

,     ,     1 1 ,     ,

1 0 1 0
,     = ,     1

0 1 0 1

y y
y y y

y y
−⎡ ⎤

= = = − = = −⎢ ⎥−⎣ ⎦
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

B D A S DA

E F C
 

The FOC is  

1 1

2 2

1

2

12 12 12

12 12 12

12 12

12 12

12 12

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0

tk q
k q

g
g

y y y
y y y

y y
y y

y y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−
⎢ ⎥
− −⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

1

2

11

22

1

2

12

1

2

12

0
0
0
0
0
0

t

tt

tt

tt

l
l
hQ
hQ

p

p

θ
θ

λ
λ
μ
γ

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

 

In DC power flow, one has to arbitrarily choose a “reference bus” which has an 

angle value of 0; otherwise, the power flow solution is undetermined. 

If bus 2 is assigned to be a reference bus, i.e. 2θ =0, one has to delete the variable 

2θ  and the corresponding equation (the 6th column and row). 

Therefore 
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1 1

2 2

1

2

12 12 12

12 12 12

12 12

12 12

12 12

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0

tk q
k q

g
g

y y y
y y y

y y
y y

y y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−
⎢ ⎥
− −⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

1

2

11

22

1

2

12

1

2

12

0
0
0
0
0
0

t

tt

tt

tt

l
l
hQ
hQ

p

p

θ
θ

λ
λ
μ
γ

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦  

Invert matrixΦ , one gets matrix W . Partition matrix W  into (1)W and (2)W . 

Define some matrix as below: 

1 1(1)

2 2

1 1 1

1 1 1 1 1 1 1 1(2)

2 2 2

2 2 2 2 2 2 2 2

1

2

1(1) (2)

2

12

1 0
,     

10

1 0 0 0 0

10 0 0 0

0
0

,     
0
0
0

t

t

t

t

g k

g k

g g g
g k g k g k g k

g g g
g k g k g k g k

h
h

l
l

p

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎣ ⎦
⎡ ⎤− −⎢ ⎥+ + + +⎢ ⎥=
⎢ ⎥

− − − −⎢ ⎥+ + + +⎣ ⎦
−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

W

W

ω ω
 

Then one has 
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( )

11 1 11
*

1 11 11 1 11 1 11 2(1) (2)1
*

22 2 222

2 22 2 22 2 22 2 22

0
1 2 1 2

0
1 2 1 2

t

t

W W
k W W k W Wl

W Wl
k W W k W W

α
β β

α
β β

1

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− + − +⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥+ = +⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥− + − +⎣ ⎦ ⎣ ⎦⎣ ⎦

W W ω  

After solving the linear equation system, one gets the optimal bidding strategy: 

( )

( )

2
1 1 1 1 12* 1 1 1 1 1 1 1

1
1 1

2
2 2 2 2 2 12* 2 2 2 2 2 2 2 2 2 2

2
2 2 2 2

2 2

2 2

t

t

g k g g p g h k h k g hl
g g

g k g g p g h k h k g hl
g g

β α α β
β β

β α α β
β β

1 1 1 1

1 1

− + + + − + +
= +

+ +

− − + − + +
= +

+ +

 

One can check if the congested equilibrium exists by plugging the optimal bids into 

the second level problem without congestion. 

Specially, substituting ik ιβ=  

2
* 1 12 1 1 1
1

1 1
2

* 2 12 2 2 2 2 2 2
2

2 2 2 2

2 2

2 2

t

t

g p g h gl
g g

g p g h gl
g g

α β α
β β

α β α
β β

1 1 1

1 1

+ +
= +

+ +

− + +
= +

+ +

 

 

In order to confirm the result, an alternative derivation is shown below: 

The first level problem is that ISO is to maximize the social welfare, i.e. maximize 

total utility – total cost 

2 2 2 2
1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

1 2 12 1 1

2 1 12 2 2

1 1 1 1max  
2 2 2 2

. .  ( )                                                                  (31)
       ( )         

t t t t t t t t t t t t

t t

t t

h Q g Q h Q g Q l q k q l q k q

s t y q Q
y q Q

θ θ
θ θ

⎛ ⎞− + − − + + +⎜ ⎟
⎝ ⎠

− = −
− = −

1 2 12 12

2 1 12 21

                                                        (32)
       ( )                                                                           (33)
       ( )                    

y p
y p

θ θ
θ θ
− ≤
− ≤                                                       (34)

 

According to (31) & (32) 
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1 1 2 2 0t t t tq Q q Q− + − =  

According to (31) & (33) 

2
1 1 12

1 0
2t tq Q p σ− − + =  

According to (32) & (34) 

2
2 2 21

1 0
2t tq Q p ξ− − + =  

Define the Lagrange function as below 

( )

2 2 2 2
1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

2 2
1 1 2 2 1 1 12 2 2 21

1 1 1 1
2 2 2 2

1 1
2 2

t t t t t t t t t t t t

t t t t t t t t

L h Q g Q h Q g Q l q k q l q k q

q Q q Q q Q p q Q pλ μ σ γ ξ

= − + − − − − −

⎛ ⎞ ⎛ ⎞+ − + − + − − + + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

F.O.C 

1 1 1 2 2 2
1 2

1 1 1 2 2 2
1 2

2
1 1 2 2 1 1 12

2
2 2 21

0,   0

0,   0

10,     0
2

1 0,    0,   0
2

t t t t
t t

t t t t
t t

t t t t t t

t t

L Ll k q l k q
q q
L Lh g Q h g Q

Q Q
L Lq Q q Q q Q p

L L Lq Q p

λ μ λ γ

λ μ λ γ

σ
λ μ

ξ μσ γξ
γ σ ξ

∂ ∂
= − − + + = = − − + + =

∂ ∂
∂ ∂

= − − − = = − − − =
∂ ∂
∂ ∂

= − + − = = − − + =
∂ ∂
∂ ∂ ∂

= − − + = = = = =
∂ ∂ ∂

 

 

Case 1: SFE with 1-line congestion 

(a) 12p Congestion ( 0 & 0, 0σ ξ γ= ≠ = ) 

1 1 12

2 2 2 2 2 2

1 1 1 1 1 1

1 1 2 2 0

t t

t t t t

t t t t

t t t t

q Q p
h g Q l k q
h g Q l k q
q Q q Q

λ
λ μ

− =
− = = +
− = + = +
− + − =
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1 1 1 12 1 1 1 12
1 1

1 1 1 1

2 2 2 12 2 2 2 12
2 2

2 2 2 2

2 2 1 1
12 12

2 2 1 1
2 1

2 2 1 1

, ,

, ,

,1 1 1 1

t t t t
t t

t t t t
t t

t t t t

t t

h l g p h l k pq Q
g k g k

h l g p h l k pq Q
g k g k

l h l hp p
k g k gP P

k g k g
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= = + = =

+ +

 

Congestion equilibrium 

For GENCO i: 

max   ( )it it it itP q Cost q−  

It is a concave function w.r.t. itl  

1 1
212

1 1 1 12 1 1 1 12 1 1 1 121 1
1 1 1

1 1 1 1 1 1
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The result is the same with the previous one!  

The second order condition requires that 0μ ≤ , therefore 

1 1 2 2
12 12

1 1 2 2
1 2

1 1 2 2

2 1 2 1
12

1 1 2 1 2 1 21 2 2 1 1 2
1 2

2 2 1 2 2 1 2 2 1

01 1 1 1
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⎛ ⎞ ⎛ ⎞−+ + + +− +⎜ ⎟ ⎜ ⎟
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

One can check if the optimal bids satisfy the condition. 

The profits of two GENCOS are: 

( )
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Which is not dependent on k1&k2 

(b) 21p Congestion ( 0, 0 & 0σ μ ξ≠ = = ) 

2 2 21

1 1 1 1 1 1

2 2 2 2 2 2

1 1 2 2 0

t t

t t t t

t t t t
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Congestion equilibrium 

For GENCO i: 

max   ( )it it it itP q Cost q−  

It is a concave function w.r.t. itl  
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The second order condition requires that 0γ ≤ , therefore 

2 2 1 1
21 21

2 2 1 1
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One can check if the optimal bids satisfy the condition. 

The profits of two GENCOS are: 

( )

( )

2
1 1 21*

1
1

2
2 2 21 2*

2
2 2

0.5
2

0.5
2

t

t

h g p
g

h g p
g

α
π

β

α
π

β

1

1

− −
=

+

+ −
=

+

 

Which is not dependent on k1&k2 

Case 2: SFE with uncongestion ( 0 & 0μ γ= = ) 
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No congestion requires that 

1. 1 1 12t tq Q p− <  
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2. 2 2 21t tq Q p− <  
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Equation (35) & (36) define a feasible region for a SFE with uncongestion to exist. 

Fig. 26 shows the feasible region as a shaded area. 
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Figure 26:  Feasible Region of Possible Equilibria 

Where: 

 

Uncongestion equilibrium 

Assume 21
2it i it i itCost q qα β= +  

For GENCO i: 

max   ( )it it it itP q Cost q−  

It is a concave function w.r.t. itl  
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The profits of two GENCOS are: 

( )
( )
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=

=
 

One can substitute ik ιβ=  into the equation above. 

First, according to Fig. 26, it is observed that the uncongested equilibrium only 

exists inside the shaded area. If the shaded region is too small, i.e. the transmission limits 

are too low, the equilibrium may not exist. Therefore, the model is very instructive for 

transmission planning by ISO and Transmission Owner because it can provide a quantitive 

measurement for transmission line upgrade. This model indicates that it is necessary to 

consider market participants' strategic behaviors as well as the traditional reliability and 

economic criteria during the process of merchant transmission planning.  
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Second, since multiple equilibria may exist (the congested equilibrium may have a 

larger possibility), the ISO or policy maker should design some economic mechanism 

(market rules) to induce the market equilibrium from congested to uncongested as long as it 

exists. 

Furthermore, one can formulate a matrix game as shown in the Table 8 to find all of 

pure and mixed strategy SFEs for the two-GENCO example. All of the three pure SFEs are 

assumed to exist. If the three SFEs are Pareto-Non-comparable, one can find a mixed 

strategy based on the specific parameters. 

Table 8: A Matrix Game for a 2-GENCO Case 

     GENCO1 
 
GENCO2 

Congestion SFE1 Congestion SFE2 Uncongestion SFE 

Congestion 
SFE1 

( )
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1 1 12*
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2 2
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t

t
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=
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=

+
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CHAPTER 5. LEARNING ALGORITHMS 
 

5.1 Introduction 

Two SFE models are derived in Chapter Four theoretically. The pros of these 

analytical models are the predictability because of well-defined mathematical foundation. 

However, these models have been simplified according to many artificial assumptions. 

Some of them may not be true in practice. For example: if an assumption of linear supply 

function is relaxed, i.e. allowing piecewise linear or more general functional forms, it is 

normally impossible to derive analytical solutions. On the contrary, Chapter Five is trying 

to model GENCOs as adaptive agents, who have learning ability and are able to adjust 

strategies based on past experiences. Some learning algorithms are introduced to derive 

GENCOs’ bidding strategies numerically. In this stage, only problems with single period 

linear SFE without transmission congestion are discussed. 

Some good candidates of learning algorithms are ALIFE techniques. They are also 

called stochastic optimization in the arena of optimization. In order to show the feasibility 

of these stochastic optimization techniques, an EDC problem with CC units is solved by 

GA, EP, PS, and MILP firstly. Furthermore, the trajectory of each artificial life technique is 

shown and compared generation-by-generation. 

5.2 EDC by Artificial Life Techniques 

The three stochastic optimization techniques are numerically tested on two EDC 

cases. 
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The test system in Case 1 consists of two CC units. Cost curves of the two units are 

represented by fourth-order polynomial functions given by equation (19) in section 3.3. The 

associated incremental costs are non-monotonically increasing. Stationary points of the 

objective function may be local minimum, local maximum, or saddle points.  

In Case 2, a system with 12 thermal units and 2 CC units is tested at the demand 

from 1200 MW to 3000 MW. A comparison between MILP (II) and stochastic techniques 

is presented. 

5.2.1 Case 1 

 
Figure 27:  The Set of Intersection Points 

 

Case 1 comprises two identical CC units at a demand of 800 MW. The problem 

formulation is given in (20)&(21). Fig. 27 shows the set of intersection points of the 

objective function surface and the constraint plane in a 3-D fashion. These intersection 

points form a smooth curve. It is clearly observed that there are two local minima and one 

symmetric local maximum on the curve. 
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In order to compare GA, EP, and PS on the same basis, the population size is set 

equal to 16, and the number of generations is set equal to 50. The optimal solution of each 

algorithm is summarized in Table 9: 

Table 9: The Optimal Solution of Each Technique for Case 1 

Pop Size = 16 # of Gens = 50  
CC unit1 
(MW) 

CC unit2 
(MW) 

Generation 
(MW) 

Total 
Cost 
($/H) 

GA 560 240 800 31888 
EP 528.75 271.25 800 31544 
PS 510 290 800 31460 
OPTIMAL 541 259 800 31221 

 

Comparing the total costs in column 5, all of the three algorithms give good 

approximations of the optimal solution. The maximal relative error (GA) is only 2.14%. 

The errors are not totally from the algorithms since they partially depend on the accuracy of 

curve fitting (refer to (19)).  

Fig. 28, 29, & 30 show the searching trajectories generation-by-generation of each 

technique. The velocity of PS contains more information than GA and EP. Specially, each 

individual particle has a memory of its own optimal value and the optimal value until the 

current generation. So all of the particles move in a fashion of the least randomness among 

the three algorithms. 

EP makes use of a Gaussian random perturbation term to update each generation. EP 

does not apply local information; however, each generation does share a common 

knowledge implicitly. The mutation factor/standard deviation is proportional to the ratio 

between individual cost and the least cost up to now. The bigger the ratio, the higher the 

possibility of greater changing and vice versa. 
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Figure 28:  The Trajectory of GA 

 

 
Figure 29:  The Trajectory of EP 

 
Figure 30:  The Trajectory of PS 
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GA employs neither global nor local historical information. Crossover and mutation 

operators bring in a new sense of change in the searching direction through an essentially 

random way.  Therefore, GA is able to search the biggest solution space of the three 

algorithms. [15] 

5.2.2 Case 2 

In this case, there are twelve thermal units and two identical CC units. The CC unit 

data are the same with Case 1. Assume both of CC units operate at state 4. Fig. 31 shows 

the system lambda curve of twelve thermal units. The curve is of course non-decreasing. 

There are two sudden jumps when demand is equal to 2272 and 2470. That is because some 

units operate at their maximal outputs and others operates at minimal, i.e. no unit is 

regulating. If lambda belongs to the ranges [10.02, 43.30] or [82.59, 87.30], the total 

generation does not vary with the changing of lambda. 
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Figure 31:  System Lambda Curve of Twelve Thermal Units 
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In order to do a comprehensive comparison, a MILP formulation (II) is implemented 

[16]. The MILP solutions are assumed as the true optimal solutions. Of course, the 

assumption may not be the truth for all cases. Then all of the four algorithms are run from 

demand is equal to 1200 to 3000 MW. The total cost for each demand and the relative error 

compared with MILP are listed in Table 10.  

Table 10: The Comparison between MILP and GA/EP/PS for Case 2 

Demand GA EP PS MILP 
1200 30312 0.0030 30787 0.0187 30225 0.0001 30222 
1300 30922 0.0004 31185 0.0089 30923 0.0005 30909 
1400 31725 0.0035 32273 0.0208 31634 0.0006 31615 
1500 32412 0.0026 32856 0.0163 32372 0.0014 32328 
1600 33133 0.0020 33490 0.0128 33105 0.0011 33067 
1700 33900 0.0026 35098 0.0380 33831 0.0005 33813 
1800 34595 0.0003 35404 0.0237 34585 0.0000 34585 
1900 35390 0.0005 36185 0.0229 35374 0.0000 35374 
2000 36413 0.0055 37794 0.0436 36223 0.0002 36214 
2100 37182 0.0023 38289 0.0322 37095 0.0000 37095 
2200 38126 0.0038 39410 0.0376 37990 0.0002 37982 
2300 39103 0.0052 38942 0.0011 38902 0.0001 38899 
2400 40073 0.0056 40646 0.0200 39850 0.0000 39849 
2500 40908 0.0023 41536 0.0177 40813 0.0000 40813 
2600 41798 0.0003 42403 0.0147 41787 0.0000 41787 
2700 43339 0.0005 44898 0.0365 43316 0.0000 43316 
2800 46728 0.0285 47516 0.0459 45432 0.0000 45432 
2900 50684 0.0559 48762 0.0159 48000 0.0000 48000 
3000 55614 0.0794 51995 0.0091 51524 0.0000 51524 
Avg Err 1.07% 2.3% 0.03%  

 

Fig. 32 shows a histogram of total costs of MILP and GA/EP/PS (population size = 

128, generations = 100). It is observed that PS gives a very good approximation; the total 

cost is only 0.03% higher than optimal solution averagely. GA’s performance is good 

except when demand is higher than 2800. EP produces relative lager errors in the middle of 

the range of demands. 
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Figure 32:  Comparison of Four Algorithms 

 

5.3 Bidding Strategies by Artificial Life Techniques 

As discussed in sections 2.1&2.2, computational approaches using autonomous 

intelligent agents are another way to study electricity market interactions. Sheble [13] 

developed a single population GA to evolve agents’ bidding strategies for a multi-round 

auction market. A single population evolutionary programming bidding strategy is 

discussed in [32]. For a market with heterogeneous participants whose strategy spaces are 

different, co-evolutionary is more appropriate, in which each agent evolves its own 

population of bidding strategies. Tully used a co-evolutionary GA to investigate the 

complex market-based unit commitment problem [70]. Thai proposed a co-evolutionary 

GA to mimic agents’ bidding behavior, and simulation results showed participants can 

improve their trading profits by the learning process [71]. This research will utilize the idea 

of co-evolutionary to develop EP and PS as well as GA to evolve GENCOs bidding 

strategies. There are various ways to design the evolutionary operations for the evolutionary 
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process; however, simplicity and ease of implementation [71] are the criteria we use for the 

design of these learning algorithms. 

The most critical problem of co-evolutionary process is fitness evaluation for each 

individual. For simplicity and low computational burden, “all against the best” [72] is 

chosen. In this framework, the fitness of an individual from an agent’s population of 

strategies is evaluated by the trading profit from the simulated competition between it and 

the best strategies of other agents’ populations. After evaluating a population, the 

corresponding fittest bidding strategy is marked the best individual for the subsequent 

fitness evaluation of the other population [71]. 

In this section, assuming N is the population size of each player position, n is the 

index of individual, n = 1, 2, …, N; I is the number of player positions, i is the index of 

GENCO, i = 1, 2, .., I; Gen is the number of generations, gen is the index of generations, 

gen = 1, 2, …, Gen.  

5.3.1 Genetic Algorithm 

Step 1: Initialization. 

Initialize each individual in every population as an M-bit binary string. Rescale the 

string into the interval [αi, αi+1], where αi is the linear coefficient of GENCO i’s cost 

function. αi: $/per-unit*H 

Step 2: Fitness Evaluation. 

Use the idea of “all against the best” to evaluate each individual’s fitness. First, one 

need randomly assign an individual from population 2 to I, when evaluating the fitness of 

the individuals in population 1. After evaluating a population, the corresponding fittest 
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bidding strategy is marked the best individual for the subsequent fitness evaluation of the 

other population. 

Step 3: Selection. 

Form a roulette wheel for each population according to the fitness ranking of 

individuals. Select a set of individuals by spinning the wheel for each population. 

Step 4: Crossover. 

Pick two individuals from the post-selected population to perform one-point 

crossover. 

Step 5: Mutation. 

Perform mutation prediction for each player population. 

Step 6: Elitism. 

Perform elitism for each population, i.e. keep the best individual of the previous 

generation in the current one. Form a new generation. 

Step 7: gen = gen + 1, if gen > Gen go to step 8; otherwise go to step 2. 

Step 8: Termination. 

5.3.2 Evolutionary Programming 

Step 1: Initialization. 

Initialize each individual in every population as a uniform distribution random 

variable within [0, 1]. Rescale the individual into the interval [αi, αi+1], where αi is the 

linear coefficient of GENCO i’s cost function. αi: $/per-unit*H 

Step 2: Fitness Evaluation. 
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Use the idea of “all against the best” to evaluate each individual’s fitness. First, one 

need randomly assign an individual from population 2 to I, when evaluating the fitness of 

the individuals in population 1. After evaluating a population, the corresponding fittest 

bidding strategy is marked the best individual for the subsequent fitness evaluation of the 

other population. 

Step 3: Creation Offsprings. 

Perturb each individual by adding a Gaussian random term with mean zero and 

standard deviation proportional to the ratio between the best and its own fitness. 

Step 4: Comparison. 

Construct a competing pool for both parent and offspring generations. Use the idea 

of “all against the best” to construct the score of each individual. 

Step 5: Selection. 

Pick the first N high score individuals as a new generation. 

Step 6: gen = gen + 1, if gen > Gen go to step 7; otherwise go to step 2. 

Step 7: Termination. 

5.3.3 Particle Swarm 

Step 1: Initialization of positions. 

Initialize each individual in every population as a uniform distribution random 

variable [0, 1]. Rescale the individual into the interval [αi, αi+1], where αi is the linear 

coefficient of GENCO i’s cost function. αi: $/per-unit*H  

Step 2: Fitness Evaluation. 
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Use the idea of “all against the best” to evaluate each individual’s fitness. First, one 

need randomly assign an individual from population 2 to I, when evaluating the fitness of 

the individuals in population 1. After evaluating a population, the corresponding fittest 

bidding strategy is marked the best individual for the subsequent fitness evaluation of the 

other population. 

Step 3: Initialization of Velocity 

Initialize each velocity in every population as a uniform distribution random variable 

[0, 1].  

Step 4: Initialization of Best values 

Record Pbest and Gbest for each initial population established in step 1. 

Step 5: Update Velocity. 

Update velocity according to particle swarm dynamics equation (13). 

Step 6: Update Position. 

Update position according to particle swarm dynamics equation (14). 

Step 7: Fitness Re-Evaluation. 

Use the idea of “all against the best” to re-evaluate each individual’s fitness in the 

new generation. 

Step 8: Update Best Value. 

Update Pbest and Gbest for each population in the new generation. 

Step 9: gen = gen + 1, if gen > Gen go to step 10; otherwise go to step 5. 

Step 10: Termination. 
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5.3.4 An Example by Particle Swarm 

A two-bus example [43] is used to check the feasibility of Particle Swarm to evolve optimal 

bidding strategy. The system consists of two generators (at Bus 1&2) and one load (at Bus 2 only).  

 

1 2
2D

1G 2G

 
Figure 33:  One Line Diagram of a Two-Bus System [43] 

 
 

GENCO i’s offer curve: iii qlP 02.0+= , cost curve: 202.0
2
110 iii xxf +=   

Demand 2’s bid curve: 22 08.030 QP −=  

This is a basic SFE model. The optimal bid for 1&2 (11.63 $/MWh) and the optimal 

profit (270.7 $/h) are given in reference [43]. 
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Figure 34:  Best Profits per Generation 
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A dual-population co-evolving Particle Swarm algorithm is implemented based on 

5.3.3. Fig. 34 & 35 show how the best profit and bid vary w.r.t generations. It is observed 

that the algorithm converge to the theoretical optimal solution quickly.  
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Figure 35:  Best Bids per Generation 
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CHAPTER 6. LINEAR PROGRAMMING 
 

6.1 Introduction 

In Chapter 4, a linear supply function equilibrium model is investigated to derive 

GENCO bidding strategy. The critical assumption is that GENCO submit a linear supply 

function with 2 strategic variables, slope k and intercept l. This assumption guarantees that 

theoretical market equilibria can be calculated analytically. If the assumption is relaxed, it 

is very difficult to find theoretical market equilibria. A lot of works have been done to 

develop some numerical techniques to solve a nonlinear supply function equilibrium model, 

generally called Mathematical Programming with Equilibrium Constraints (MPEC). 

However, MPEC problems are highly non-convex. There is not a commercial software 

package which can solve MPEC problem robustly so far. 

On the other side, almost every electricity market requires participants to submit 

piecewise staircase energy offer curves (supply curves) that consist of up to 10 - 20 

segments. Piecewise staircase curves are defined by multiple variables (both MW 

breakpoints and prices) which can represent a very non-linear supply function. Linear 

supply function model does not match the real world very well. Therefore, the previous 

method cannot be applied to solve the market equilibrium problems in a real world setting. 

Given these two concerns, it is very interesting to develop an optimal bidding 

strategy based on piecewise staircase energy offer curves. The reason why piecewise 

staircase curves are desirable is that the optimization engine of Economic Dispatch run by 

ISOs and utilities is based on Linear Programming. Commercial tools of Economic 
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Dispatch use Linear Programming primarily. Therefore, it is critical to develop an optimal 

bidding strategy for a GENCO considering the characteristics of LP engine inside ISO. 

Here a LP based method to derive GENCO bidding strategy where a piecewise staircase 

curve is assumed. 

6.2 Complete Information 

In the first part, one assumes that a GENCO has complete information on system 

conditions (demand, transmission limit, outage schedule etc.) and his rival’s strategies 

(bids/offers). 

6.2.1 A low level problem of MPEC – Economic Dispatch 

The Economic Dispatch run by ISO can be described in an abstract level by a LP 

problem with upper bound (LPUB). Security Constraint (e.g. n-1 contingency) can be also 

incorporated into the model. 

Primal Problem: 

min  
s.t.        (1)  DC power flow and 
                                      transmission line constraint
      0   (2) Generator operational constraint

Tc x
Ax b

x x

λ

μ

= →

≤ ≤ →

 

Where: 

c is bids/offers submit by GENCOs 

x is decision variables / generator dispatch output at each segment 

Considering the dual problem of EDC, it can be described as follows: 

Dual Problem: 

max    
s.t.         (3)
          0             (4)
           is free

T T

T

b x
A c
λ μ
λ μ

μ
λ

−
− ≤

≥
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Therefore, the KKT condition for EDC is as follows 

KKT Conditions: 

      
      
     0  
     0 
      is free
     ( ) 0   (5)
     ( ) 0            (6)

T

T T

T

Ax b
A c

x x

A c x
x x

λ μ

μ
λ

λ μ
μ

=
− ≤

≤ ≤
≥

− − =
− =

 

 
Equation (5) and (6) are called complementary slackness conditions. 

 

6.2.2 A high level problem of MPEC – GENCO profit maximization 

1 1 1 1

  ( )max
i i

ij

j ji i

i ij ij ij
c i j i j

x f xχ
= = = =

−∑ ∑ ∑∑  

Where: 

χi: Locational Marginal Price (LMP) for generator i; χi is a linear combination of 

dual variables λ; 

fij: coefficient of piecewise staircase cost curve for generator i, segment j; 

This objective function is not linear itself, which consists of both primal and dual 

variables. The constraints for the high level problem are exactly the same with the KKT 

conditions of EDC. Obviously the feasible region defined by KKT is not convex since there 

exist complementary slackness conditions. Generally, the problem is a Mathematical 

Programming with Equilibrium Constraint (MPEC) or bi-level optimization. It is very 

challenging to find the global optima of MPEC. The difficulties associated with MPEC are 

discussed in [76] and [77]. Some numerical algorithms such as PIPA, PSQP, … are 
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proposed in the literature; however, these methods cannot guarantee to find a global optimal 

solution. 

6.2.3 A New Algorithm: Parametric LP and LP 

The author proposes a method, which consists of 2 steps: parametric LP and LP. The 

method uses a famous conclusion in LP: an optimal solution of LP has to be located at an 

extreme point of feasible region. The global optima will be obtained within finite 

steps.[75][80][82] 

6.2.4 Algorithm Overview 

1. Parametric Linear Programming 

Parametric Linear Programming is frequently useful to study the behavior of the 

optimal solution to a LP problem, as the entire objective function is systematically varied, 

or as the entire requirements vector is systematically varied.  

Let us consider the case in which the objective function is varied parametrically.  

 

min  ( )
s.t.  
      0

Tc c x
Ax b

x x

α
λ

μ

+
= →
≤ ≤ →

 

 

Where: 

c is a bid vector submit by the rivals, with several zero values indicating the 

GENCO’s decision variables; and non-zero for other rivals. 
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c is a bid vector submit by the GENCO, with several non-zero values indicating the 

GENCO’s decision variables; and zero for other rivals. 

α is a scalar parameter ( 0α ≥ ).α  can be explained as a multiplier or strategic 

variable between bids and costs, which is also a decision variable of the GENCO. If c  

represents the true marginal cost of the GENCO, α represents a bid “mark-up” ( 1α > ) or 

“mark-down” ( 1α > ). 

x is the vector of decision variables / generator dispatch output at each segment. 

 

Assume one has found the optimal solution *x at *α α= . B is the optimal basis (the 

vectors that basic variables correspond to), N is the vectors that lower non-basic variables 

correspond to, and M is the vectors that upper non-basic variables correspond to. Then one 

can write A matrix and cost vectors c as follows: 

[ , , ]
[ , , ]B N M

A B N M
c c c c
=
=

 

 

According to the optimal condition of LPUP: 

1

1

0
0

N B N

M B M

c B N c
c B M c

ξ
ξ

−

−

= − ≤
= − ≥

  

 

One can know that these two inequalities must hold given *α α= . 

* 1 * 1

* 1 * 1

( ) ( ) 0      (7)
( ) ( ) 0    (8)

N N B N B N

M M B M B M

c B N c c B N c
c B M c c B M c

ξ α ξ α

ξ α ξ α

− −

− −

+ = − + − ≤

+ = − + − ≥
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In order to calculate the interval ofα , within which *x is the optimal solution, one 

need to solve (7) and (8) for j = 1, 2, …, n. n is the number of non-basic variables. 

Let us consider equation (7) first. 

, ,

, , ,

, , ,

0  0

  0

  0

N j N j

N j N j N j

N j N j N j

if

if

if

ξ ξ

α ξ ξ ξ

α ξ ξ ξ

≤ =

≤ − >

≥ − <

 

Let us define 

, , ,

, , ,

min{  | 0}

max{  | 0}
N N j N j N j

N N j N j N j

α ξ ξ ξ

α ξ ξ ξ

= − >

= − <
 

 

Then, let us consider equation (8). 

, ,

, , ,

, , ,

0  0

  0

  0

M j M j

M j M j M j

M j M j M j

if

if

if

ξ ξ

α ξ ξ ξ

α ξ ξ ξ

≥ =

≥ − >

≤ − <

 

Let us define 

, , ,

, , ,

min{  | 0}

max{  | 0}
M M j M j M j

M M j M j M j

α ξ ξ ξ

α ξ ξ ξ

= − <

= − >
 

Here: 

( min
max

∅ = +∞
∅ = −∞

) 

Then one can define
min{ , }
max{ , }

B M N

B M N

α α α
α α α

=
=

, therefore for [ ],B Bα α α∈ , the optimal 

solution *x  does not change. The interval of [ ],B Bα α α∈  is called the characteristic 

interval of basis B. 
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If α  exceeds Bα , the current solution is no longer optimal. In this case, one would 

find the new optimal solution resulting from letting α  be slightly larger than Bα , and 

then finding the new upper limit on α  for which this solution remains optimal. One could 

repeat this process for whatever range of value for α  were of interest. 

2. Linear Programming.  

Assuming the current solution *x  (vertex) is found, the GENCO is trying to 

maximize its own profit by changing its bids. 

Then in this step, the GENCO profit maximization becomes 

1 1 1 1

  [ ]( )

s.t.
      
     0 
     ( ) 0 
     ( ) 0          
      is free

max
i i

ij

j ji i

i ij ij ij
c i j i j

T

T T

T

x f x

A c

A c x
x x

χ λ

λ μ
μ

λ μ
μ

λ

= = = =

−

− ≤
≥

− − =
− =

∑ ∑ ∑∑
%

%

%
 (9) 

Where: 

[ ]iχ λ : Locational Marginal Price (LMP) for generator i; [ ]iχ λ  is a linear 

combination of dual variables λ; 

The decision variables include ,  ,  and c λ μ% . c%  is equal to c cα+ . 

Initially, one may think this problem is hard to solve since complementary slackness 

conditions still are there. However, given this assumption “the optimal solution (vertex) 

does not change”, it is true that decision variable x is already known (x = *x )! So 

complementary slackness conditions become linear. This is really a linear programming 
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problem. After solving this, one will get the optimal bidding at this dispatch optimal 

solution (vertex). 

3. Repeat LP in step 2 and calculate the optimal bids at a new solution of parametric 

LP. 

4. This procedure will be finite since a polyhedron (defined by linear constraints of 

the low level problem/EDC) has a limit number of vertex.  

The optimal bidding of a GENCO will be obtained by solving multiple LP problems 

and choosing the one associated with the maximal profit. Considering LP solver is very fast 

now, it will not be a big issue.  

5. An extended application for this method is to incorporate incomplete information.  

6.3 Incomplete Information 

In the second part, one assumes that a GENCO has incomplete information on 

system conditions (demand, transmission limit, outage schedule etc.) and his rival’s 

strategies (bids/offers).  

6.3.1 Incomplete Information and Decision Analysis 

Based on the classical Decision Analysis method, the incomplete information is 

represented by a set of scenarios ω∈Ω , Ω  is the space of scenarios [64]. It is assumed 

that each scenario ω  is independent. Fig. 36 shows a decision tree with each scenario. 
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1p

2p

3p

4p

Scenario 1

Scenario 2

Scenario 3

Scenario 4
 

Figure 36:  Decision Tree with Each Scenario 

6.3.2 GENCO profit maximization with incomplete Information 

This objective function with incomplete information changes to maximize the 

expected profit over the scenarios spaceΩ .  

The constraint set is the intersection of each constraint set associated with each 

scenario.  

Therefore, the GENCO profit maximization problem with incomplete information 

can be formulized as follows: 

1 1 1 1

  [ ]( )

s.t.
      
     0 
     ( ) 0 
     ( ) 0         
      is free
     

max
i i

ij

j ji i

i ij ij ij
i j i jc

T

T T

T

E x f x

A c

A c x
x x

ω

ω ω ω

ω

ω ω ω ω

ω

ω ω ω ω ω

ω ω ω

ω

χ λ

λ μ
μ

λ μ
μ

λ
ω

= = = =

⎡ ⎤−⎢ ⎥⎣ ⎦

− ≤
≥

− − =
− =

∈Ω

∑ ∑ ∑∑
%

%

%

 (10) 

 
Where: 
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ijcω%  is bids submitted by the GENCO which is under study. 

The decision variables include ,  ,  and cω ω ωλ μ% . cω%  is equal to c cω α+ . 

6.3.3 A New Algorithm: Scenario Analysis, Parametric LP, and LP 

The author proposes a scenario-based method. Each scenario consists of 2 steps: 

parametric LP and LP. The global optima will be obtained within finite steps. The method 

uses a famous conclusion in LP: an optimal solution of LP has to be located at an extreme 

point of feasible region. The global optima will be obtained within finite steps. 

6.3.4 Algorithm Overview 

1. Parametric Linear Programming.  

For each scenario ω , it is complete information. Parametric Linear Programming is 

carried on to look for characteristic interval and the associated optimal solution as before. 

With α  increasing, the union set of each solution is a vertex of the whole problem. 

 

Scenario 1

Scenario 2

Scenario 

*1 *1x X∈

*2 *2x X∈
*3 *3x X∈

* *x Xω ω∈ω

Scenario 3

 

Figure 37:  The Vertex with Each Scenario 
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α0

Scenario 1

Scenario 2

Scenario 3

Scenario ω

1α 2α 3α 4α 5α 6α 7α 8α 9α  

Figure 38:  The Combination of Vertex 

 
2. Linear Programming.  

Give each solution from PLP * * *1 *2 *... ...x X X X X ω∈ = ∪ ∪ ∪ ∪ , one can solve 

problem (10) as a linear programming. Since the number of solution of PLP is finite, the 

global optima will be obtained within finite steps. 

6.4 Numerical Examples 

6.4.1 4-Bus System 

In Section 6.4.1, the proposed method is applied to a 4-bus illustrative system. The 

optimal bid is simulated case by case. 

The one-line diagram of 4-bus system is shown in Fig. 39. The load data, branch 

admittance, and flow direction are marked in Fig. 39. Table 11 & 12 list generators cost 

data and business associates cross-reference. 
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Figure 39:  One Line Diagram for 4-Bus System [4] 

 

Table 11: Slopes of Piecewise Linear Cost Curves for 4-Bus System 
Company Unit i fi,1 fi,2 fi,3 

1 12.46 13.07 13.58 A 
2 11.29 12.11 12.82 

B 4 11.83 12.54 13.20 
 

 
Table 12: Break Points of Piecewise Linear Cost Curves for 4-Bus System 

Company Unit i Min Gen 
Cost ($) 

BP1 (MW) BP2 (MW) BP3 (MW) BP4 (MW) 

1 809.9 50.0 100 160 200 A 
2 600 37.5 70 130 150 

B 4 742.5 45.0 90 140 180 

6.4.1.1  Complete Information 

Case 1 Base Case 
 

Table 13: Demand for 4-Bus System [4] 
Load j MW 

Pd2 100 
Pd3 117.87 
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Case 1 is considered as a “Base Case”. Table 13 lists load data of the system. Table 

14 defines transmission capacity. From Case 1 to Case 4, it is assumed that transmission 

line has infinite capacity. 

Table 14: Transmission Capacity for Base Case in 4-Bus System [4] 
Transmission Line Capacity 

1 Inf 
2 Inf 
3 Inf 
4 Inf 
5 Inf 

 
 

Case 1 assumes Company B will bid as his marginal cost (shown in Table 15). This 

assumption is applied in Case 1 – Case 3 & Case 5. Company A is looking for his optimal 

bidding strategy based on the strategic variable α. 

Table 15: Bids for 4-Bus System 
Company Unit i ci,1 ci,2 ci,3 

1 1.1α 1.2α 1.3α A 
2 1.05α 1.15α 1.25α 

B 4 11.83 12.54 13.20 
 
 

After running the proposed algorithm, the critical points by PLP are shown in Table 

16. Fig. 40 and Table 17 show that how the maximal profit of Company A changes with 

respect to his bid. The maximal profit is obtained by bidding at α = 11.4. 

According to Fig. 40, the maximal profit of Company A is a piecewise linear 

function of his bid. There are several jumps in the function because all of bid curves are 

piecewise staircase. Obviously the profit function is highly non-convex, which is 

understandable since the GENCO profit maximization is essentially a MPEC problem 
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Table 16: Critical Points for Base Case in 4-Bus System 
Critical 
Point 0 10.287 10.755 11.4 11.943 Inf 

 
 

- 450

- 400

- 350

- 300

- 250
10 12 14 16 18 20

Lambda

M
ax

im
al

 P
ro

fit

 
Figure 40:  Company A Profit for Base Case in 4-Bus System 

 
Table 17: Profit for Base Case in 4-Bus System 

Alpha Profit 
5 -1440.55 

10 -446.551 
10.287 -389.504 
10.287 -388.7 

10.3 -388.7 
10.7545 -388.7 
10.7545 -362.136 

10.8 -355.765 
11.1 -313.568 
11.4 -271.37 
11.4 -272 
11.8 -272 

11.9429 -272 
11.9429 -312.625 

12 -312.625 
20 -312.625 
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Table 18 lists generation dispatch MW of each segment, which is corresponding to 

critical intervals.  

Table 18: Dispatch MW for Base Case in 4-Bus System 

Alpha 
MW 1 10.7 10.8 11.5 12 

MW11 0.5 0.5 0.0787 0 0 
MW12 0 0 0 0 0 
MW13 0 0 0 0 0 
MW21 0.325 0.325 0.325 0.325 0 
MW22 0.0287 0 0 0 0 
MW23 0 0 0 0 0 
MW41 0 0.0287 0.45 0.45 0.45 
MW42 0 0 0 0.0787 0.4037 
MW43 0 0 0 0 0 

 

Case 2 High Demand 

In Case 2, it is assumed that each load increases by 100%. Table 19 lists load data of 

the system. Table 20 shows the critical points by PLP. 

Table 19: High Demand (200%) for 4-Bus System 
Load j MW 

Pd2 200 
Pd3 235.74 

 
 

Table 20: Critical Points for Case 2 in 4-Bus System 

Critical 
Point 9.1 9.6462 10.032 10.56 11 83.3333 86.9565 90.9091 95.2381 Inf 

 

Fig. 41 and Table 21 show maximal profit with respect to bid. And Table 22 lists 

generation dispatch MW of each segment, which is corresponding to critical intervals. 
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Figure 41:  Company A Profit for Case 2 in 4-Bus System 

 

Table 21: Profit for Case 2 in 4-Bus System 

Alpha Profit Alpha Profit 
0 -569.7 11 -87.0538 

9.1 -569.7 50 11881.58 
9.1 -562.245 83.3333 22111.17 
9.5 -382.46 83.3333 19873.6 

9.6461 -316.79 86.9565 19873.6 
9.6462 -279.6 86.9565 14600.2 
10.032 -279.6 90.909 14600.2 
10.032 -275.607 90.9091 10223.2 
10.56 -80.4188 95.238 10223.2 
10.56 -82.6 95.2381 7340.125 

11 -82.6 100 7340.125 

 
Table 22: Dispatch MW for Case 2 in 4-Bus System 

Alpha 
MW 8 9.5 10 10.5 10.9 50 85 88 95 200 

MW11 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 
MW12 0.6 0.6 0.6 0.6 0.6 0.2574 0 0 0 0 
MW13 0.4 0.3574 0 0 0 0 0 0 0 0 
MW21 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0 
MW22 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0 0 0 
MW23 0.2 0.2 0.2 0.0574 0 0 0 0 0 0 
MW41 0.4074 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 
MW42 0 0 0.3574 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
MW43 0 0 0 0 0.0574 0.4 0.4 0.4 0.4 0.4 
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Case 3 Low Demand 

In Case 3, it is assumed that each load decreases by 20% (Shown in Table 23). 

Table 23: High Demand (80%) for 4-Bus System 
Load j MW 

Pd2 80 
Pd3 94.30 

 
Table 24: Critical Points for Case 3 in 4-Bus System 

Critical 
Point 0 10.7545 11.2667 Inf 
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Figure 42:  Company A Profit for Case 3 in 4-Bus System 

 
Table 25: Profit for Case 3 in 4-Bus System 

Alpha Profit 
0 -1930.7 

9.1 -598.385 
10.7545 -363.065 
10.7545 -357.2 
11.2667 -357.2 
11.2667 -374.75 

15 -374.75 
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Table 26: Dispatch MW for Case 3 in 4-Bus System 

Alpha 
MW 1 11 50 

MW11 0.093 0 0 
MW12 0 0 0 
MW13 0 0 0 
MW21 0.325 0.325 0 
MW22 0 0 0 
MW23 0 0 0 
MW41 0 0.093 0.418 
MW42 0 0 0 
MW43 0 0 0 

Case 4 High Bid 

Case 4 assumes Company B will bid as 20% higher than his marginal cost (Shown in 

Table 27). 

Table 27: High Bids for 4-Bus System 
Company Unit i ci,1 ci,2 ci,3 

1 1.1α 1.2α 1.3α A 
2 1.05α 1.15α 1.25α 

B 4 14.20 15.05 15.84 
 

Table 28: Critical Points for Case 4 in 4-Bus System 
Critical 
Point 0 12.34 12.90 13.68 14.33 Inf 
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Figure 43:  Company A Profit for Case 4 in 4-Bus System 
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Table 29: Profit for Case 4 in 4-Bus System 

Alpha Profit Alpha Profit 
11 -247.7502 13.4 9.9436 

12.3443 19.49731215 13.5 24.0093 
12.3443 13.52 13.6 38.075 
12.9005 13.52 13.68 49.32756 

12.91 -58.97833 13.68 28.96 
13 -46.3192 14.3314 28.96 

13.2 -18.1878 14.3315 -93.175 
13.3 -4.1221 15 -93.175 

 
Table 30: Dispatch MW for Case 4 in 4-Bus System 

Alpha 
MW 5 12.8 13.5 14 15 

MW11 0.5 0.5 0.0787 0 0 
MW12 0 0 0 0 0 
MW13 0 0 0 0 0 
MW21 0.325 0.325 0.325 0.325 0 
MW22 0.0287 0 0 0 0 
MW23 0 0 0 0 0 
MW41 0 0.0287 0.45 0.45 0.45 
MW42 0 0 0 0.0787 0.4037 
MW43 0 0 0 0 0 

 

Case 5 Transmission Congestion 

Case 5 assumes that transmission line 3 has a capacity of 10 MW (Shown in Table 

31). Transmission congestion may happen due to the small limit. In this dissertation, 

transmission limits only refer to thermal limits. Voltage and stability limits [81] may be 

incorporated, but it is beyond the scope of this research. 

Table 31: Transmission Capacity for Case 5 in 4-Bus System 
Transmission Line Capacity 

1 Inf 
2 Inf 
3 10 
4 Inf 
5 Inf 
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Table 32: Critical Points for Case 5 in 4-Bus System 
Critical 
Point 

0 9.464 10.594 10.7545 11.4 11.9429 95.2381 Inf 
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Figure 44:  Company A Profit for Case 5 in 4-Bus System 

Table 33: Profit for Case 5 in 4-Bus System 

Alpha Profit Alpha Profit 
0 -2449.6107 11.4 -271.3704 

9.464 -575.923248 11.4 -272 
9.464 -562.468984 11.9429 -272 

10.594 -455.055139 11.9429 -311.9602261 
10.6 -439.004 95.2381 4107.3913 

10.7545 -377.4600065 95.2381 4060.375 
10.7546 -362.1504278 100 4060.375 

 

Table 34: Dispatch MW for Case 5 in 4-Bus System 

Alpha 
MW 5 10 10.7 11 11.5 20 100 

MW11 0.5 0.5 0.3213 0.0787 0 0 0 
MW12 0.0978 0 0 0 0 0 0 
MW13 0 0 0 0 0 0 0 
MW21 0.2559 0.2803 0.325 0.325 0.325 0.0053 0 
MW22 0 0 0 0 0 0 0 
MW23 0 0 0 0 0 0 0 
MW41 0 0.0734 0.2074 0.45 0.45 0.45 0.45 
MW42 0 0 0 0 0.0787 0.3984 0.3984 
MW43 0 0 0 0 0 0 0 
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6.4.1.2  Incomplete Information 

 
Table 35: Probability of Each Scenario 

Scenarios Probability 
Base Case 0.45 
High Bid 0.05 

Low Demand 0.45 
High Demand 0.05 

 
 

Table 36: Profit for Incomplete Information Case in 4-Bus System 

Alpha Profit Alpha Profit 
9.1 -610.494 11.9429 -283.943 

9.6462 -506.738 12.3443 -292.069 
10.032 -443.697 12.9005 -283.833 
10.287 -397.119 13.68 -270.082 
10.56 -371.525 14.3314 -260.993 

10.7545 -357.252 83.3333 791.5809 
11 -324.915 86.9565 679.7025 

11.2667 -309.188 90.9091 197.1825 
11.4 -297.38 95.2381 53.02875 
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Figure 45:  Company A Profit for Incomplet Information in 4-Bus System 
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6.4.2 RTS96 System 
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Figure 46:  One Line Diagram for RTS96 System [73] 
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In Section 6.4.2, the proposed method is applied to RTS96 test system. RTS96 

system is a standard benchmark example in bulk power system reliability evaluation studies 

[73]. The topology for RTS96 is shown in Fig. 46 and is considered as ”One Area”. 

A ”Two Area” or ”Three Area” system can be developed by linking various single RTS96 

areas. This research will focus on One Area system. The system includes 24 buses, 34 

transmission lines (4 double-lines), 11 units, and 17 loads. In order to simulate optimal 

bidding strategy, the whole system is divided into 3 companies, which is shown in Fig. 47 

and Table 37. Company A holds 54.2% of total capacity, Company B holds 16.6%, and 

Company C holds 29.2%. Company C is the one under study, A&B are considered as 

competitors. 

Table 38 shows the generating unit heat rates. Table 39 shows the assumed load for 

each bus. Table 40 shows fuel cost information from Energy Information Administration 

website. Table 41 shows the transmission branch data. All pu quantities are on 100 MVA 

base. 

Table 37: Business Associations and Generation Units 
Company Capacity MW Bus ID Unit Type 

2 U76 
7 U100 

18 U400 
21 U400 

A 1052 

22 U76 
14 U155 
15 U12 

B 322 

16 U155 
1 U20 

13 U197 
C 567 

23 U350 
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Figure 47:  Bussiness Regions for RTS96 System 
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Table 38: Generator Heat Rate and Incremental Heat Rate [73] 
Size 
MW 

Type Fuel Output 
% 

MW Net Plant Heat 
Rate 

(MBTU/MWH) 

Incremental 
Heat Rate 

Calculated by 
Continuous 

Function 
(MBTU/MWH)

20 2.40 16.017 10.179 
50 6.00 12.500 10.330 
80 9.60 11.900 11.668 

12 Fossil 
Steam 

#6 Oil 

100 12.00 12.000 13.219 
79 15.80 15.063 9.859 
80 16.00 15.000 10.139 
99 19.80 14.500 14.272 

20 Combustion 
Turbine 

Natural 
Gas 

100 20.00 14.499 14.427 
50 Hydro  100 50.00 Not Applicable 

20 15.20 17.107 9.548 
50 38.00 12.637 9.966 
80 60.80 11.900 11.576 

76 Fossil 
Steam 

Coal 

100 76.00 12.000 13.311 
25 25.00 12.999 8.089 
50 50.00 10.700 8.708 
80 80.00 10.087 9.420 

100 Fossil 
Steam 

#6 Oil 

100 100.00 10.000 9.877 
35 54.25 11.244 8.265 
60 93.00 10.053 8.541 
80 124.00 9.718 8.900 

155 Fossil 
Steam 

Coal 

100 155.00 9.600 9.381 
35 68.95 10.750 8.348 
60 118.20 9.850 8.833 
80 157.60 9.644 9.225 

197 Fossil 
Steam 

#6 Oil 

100 197.00 9.600 9.620 
40 140.00 10.200 8.402 
65 227.50 9.600 8.896 
80 280.00 9.500 9.244 

350 Fossil 
Steam 

Coal 

100 350.00 9.500 9.768 
25 100.00 12.751 8.848 
50 200.00 10.825 8.965 
80 320.00 10.170 9.210 

400 Fossil 
Steam 

Coal 

100 400.00 10.000 9.438 
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Table 39: Bus Load Data [73] 

Bus Load Bus ID % Of System Load 
1 3.8 
2 3.4 
3 6.3 
4 2.6 
5 2.5 
6 4.8 
7 4.4 
8 6.0 
9 6.1 

10 6.8 
13 9.3 
14 6.8 
15 11.1 
16 3.5 
18 11.7 
19 6.4 
20 4.5 

 Total 100.0 

 
Table 40: Fuel Cost Data [78] 

Fuel Type Cost ($/MBTU) 
Oil 6.44 

Coal 1.54 
Natural Gas 8.21 

 
 
Case 1 Base Case 
 

Case 1 is considered as a “Base Case”. The system demand is 1000 MW (Table 42). 

It is assumed that all competitors bid as their marginal costs. Players can estimate 

competitors’ marginal costs based on generating technology, fuel costs, and historic data 

published on OASIS system. Company C bids on his marginal cost as well. α is defined as a 

strategic variable or bid mark-up. Company C’s bidding pattern is shown in Table 43. 

When α = 12.94, Company A bids as his marginal cost. 

 



www.manaraa.com

 

 

131

 

Table 41: Transmission Line Data [73] 

Con = Continuous rating 
LTE = Long-time emergency rating (24 hour) 
STE = Short-time emergency rating (15 minutes) 
 

ID # From 
Bus To Bus L Miles R (pu) X (pu) B (pu) Con 

MVA 
LTW 
MVA 

STE 
MVA 

A1 101 102 3 0.003 0.014 0.461 175 193 200 
A2 101 103 55 0.055 0.211 0.057 175 208 220 
A3 101 105 22 0.022 0.085 0.023 175 208 220 
A4 102 104 33 0.033 0.127 0.034 175 208 220 
A5 102 106 50 0.050 0.192 0.052 175 208 220 
A6 103 109 31 0.031 0.119 0.032 175 208 220 
A7 103 124 0 0.002 0.084 0 400 510 600 
A8 104 109 27 0.027 0.104 0.028 175 208 220 
A9 105 110 23 0.023 0.088 0.024 175 208 220 

A10 106 110 16 0.014 0.061 2.459 175 193 200 
A11 107 108 16 0.016 0.061 0.017 175 208 220 

A12-1 108 109 43 0.043 0.165 0.045 175 208 220 
A13-1 108 110 43 0.043 0.165 0.045 175 208 220 
A14 109 111 0 0.002 0.084 0 400 510 600 
A15 109 112 0 0.002 0.084 0 400 510 600 
A16 110 111 0 0.002 0.084 0 400 510 600 
A17 110 112 0 0.002 0.084 0 400 510 600 
A18 111 113 33 0.006 0.048 0.100 500 600 625 
A19 111 114 29 0.005 0.042 0.088 500 600 625 
A20 112 113 33 0.006 0.048 0.100 500 600 625 
A21 112 123 67 0.012 0.097 0.203 500 600 625 
A22 113 123 60 0.011 0.087 0.182 500 600 625 
A23 114 116 27 0.005 0.059 0.082 500 600 625 
A24 115 116 12 0.002 0.017 0.036 500 600 625 

A25-1 115 121 34 0.006 0.049 0.103 500 600 625 
A25-2 115 121 34 0.006 0.049 0.103 500 600 625 
A26 115 124 36 0.007 0.052 0.109 500 600 625 
A27 116 117 18 0.003 0.026 0.055 500 600 625 
A28 116 119 16 0.003 0.023 0.049 500 600 625 
A29 117 118 10 0.002 0.014 0.030 500 600 625 
A30 117 122 73 0.014 0.105 0.221 500 600 625 

A31-1 118 121 18 0.003 0.026 0.055 500 600 625 
A31-2 118 121 18 0.003 0.026 0.055 500 600 625 
A32-1 119 120 27.5 0.005 0.040 0.083 500 600 625 
A32-2 119 120 27.5 0.005 0.040 0.083 500 600 625 
A33-1 120 123 15 0.003 0.022 0.046 500 600 625 
A33-2 120 123 15 0.003 0.022 0.046 500 600 625 
A34 121 122 47 0.009 0.068 0.142 500 600 625 
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Table 42: System Demand for Base Case 

Total System Demand (MW) 1000 
 
 

Table 43: Bids of Piecewise Linear Cost Curves 
Company Unit i ci,1 ci,2 ci,3 

1 6.26α 6.43α 9.06α 
13 4.15α 4.40α 4.59α 

C 

23 1.00α 1.06α 1.10α 
 

Fig. 48 and Table 44 show that how the maximal profit of Company C changes with 

respect to his bid. The maximal profit is obtained by bidding between α = 12.52 and 13.009. 

According to Fig. 48, the maximal profit of Company C is a piecewise linear 

function of his bid, which is consistent with the previous 4-bus example. 
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Figure 48:  Company C Profit for Base Case in RTS96 System 
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Table 45 shows LMPs at each bus when Company C bid at his optimal strategy. It 

can be observed that line 3 (from Bus 1 to 5) is binding at the inverse direction, which 

causes LMP at Bus 5 is higher than all of others. 

 
Table 44: Profit for Base Case in RTS96 System 

Alpha Profit 
12.385 706.297 
12.52 706.297 
12.52 786.645 

13.009 786.645 
13.009 782.751 
13.774 782.751 
13.774 757.159 
13.86 779.378 
13.86 745.614 

13.925 745.614 
13.925 740.109 

15 740.109 
 
 

Table 45: LMP for Base Case in RTS96 System 

1 14.76245 15.4089 9 14.0355 13 13.854317 13.619121 13.6324
2 14.704 6 14.442110 14.360114 13.243318 13.626 22 13.6272
3 14.05517 14.197811 13.763315 13.646219 13.676723 13.7742
4 14.33648 14.197812 13.989416 13.604420 13.739524 13.8042

 
 
 
Case 2 
 

Table 46: System Demand for Case 2 

Total System Demand (MW) 800 
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Figure 49:  Company C Profit for Case 2 in RTS96 System 

 
Table 47: Profit for Case 2 in RTS96 System 

Alpha Profit 
12.021 383.918 
12.021 392.17 
12.423 543.781 
12.423 567.654 
13.153 567.654 
13.153 563.792 
13.626 702.947 
13.626 655.236 

15 655.236 
 
 
 
Case 3 
 

Table 48: System Demand for Case 3 

Total System Demand (MW) 900 
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Figure 50:  Company C Profit for Case 3 in RTS96 System 

 
 

Table 49: Profit for Case 3 in RTS96 System 

Alpha Profit 
11.955 463.126 
11.955 507 
12.385 693.489 
12.385 711.463 
12.869 711.463 
12.869 715.348 
13.626 715.348 
13.626 655.236 

15 655.236 
 

 
 
Case 4 
 

Table 50: System Demand for Case 4 

Total System Demand (MW) 1100 
 



www.manaraa.com

 

 

136

 

750

770

790

810

830

850

870

890

12. 5 13 13. 5 14 14. 5 15
Lambda

M
ax

im
al

 P
ro

fit

 
Figure 51:  Company C Profit for Case 4 in RTS96 System 

 
Table 51: Profit for Case 4 in RTS96 System 

Alpha Profit 
12.551 774.513 
12.551 792.846 
12.68 854.025 
12.68 861.662 

13.176 861.662 
13.176 860.502 
13.184 863.358 
13.184 853.855 
13.232 869.136 
13.232 865.678 
14.01 865.68 
14.01 830.64 

14.044 845.204 
14.044 784.664 

15 784.664 
 
 

Table 52: LMP for Case 4 in RTS96 System 

1 15.43215 16.3622 9 14.386 13 14.125317 13.786921 13.806 
2 15.348 6 14.971210 14.853214 13.246218 13.796822 13.7985
3 14.41437 14.619611 13.994415 13.825919 13.869823 14.01 
4 14.81918 14.619612 14.319816 13.765820 13.960224 14.0533
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Case 5 
 

Table 53: System Demand for Case 5 

Total System Demand (MW) 1200 
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Figure 52:  Company C Profit for Case 5 in RTS96 System 

 
Table 54: Profit for Case 5 in RTS96 System 

Alpha Profit 
12.906 976.415 
12.906 979.01 
13.41 979.01 
13.41 975.088 

13.434 985.176 
13.434 971.537 
13.561 1035.24 
13.561 1022.83 
14.359 1022.83 
14.359 911.953 
14.581 958.855 
14.581 950.468 
14.713 985.937 
14.713 978.67 

15 978.67 
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Table 55: LMP for Case 5 in RTS96 System 

1 18.04265 20.4525 9 15.3325 13 14.657 17 13.780321 13.8297
2 17.82486 16.848610 16.542814 12.379418 13.806 22 13.8103
3 15.40577 15.937711 14.317815 13.881419 13.995223 14.3584
4 16.45468 15.937712 15.160916 13.725520 14.229324 14.4705

 
 
Case 6 High Bid 
 

Table 56: System Demand for Case 6 

Total System Demand (MW) 1000 
 
Suppose all other units bid as 10% higher than marginal cost. 
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Figure 53:  Company C Profit for Case 6 in RTS96 System 

 
Table 57: LMP for Case 6 in RTS96 System 

1 14.753 5 15.2946 9 14.1438 13 13.991917 13.794921 13.806 
2 14.704 6 14.484610 14.415814 13.48 18 13.800722 13.8016
3 14.16027 14.279811 13.915715 13.817619 13.843223 13.9248
4 14.396 8 14.279812 14.105216 13.782620 13.895824 13.95 
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Table 58: Profit for Case 6 in RTS96 System 

Alpha Profit 
13.624 668.763 
13.624 706.297 
13.772 706.297 
13.772 711.463 
14.31 711.463 
14.31 715.348 

15.152 715.348 
15.152 694.297 
15.246 694.297 
15.246 669.112 
15.317 669.112 
15.317 740.109 

 
Case 7 Different Bid Pattern 
 

Table 59: System Demand for Case 7 

Total System Demand (MW) 1000 
 

Table 60: Bids of Piecewise Linear Cost Curves 
Company Unit i ci,1 ci,2 ci,3 

1 1.10α 1.20α 1.30α 
13 1.05α 1.15α 1.25α 

C 

23 0.50α 0.60α 0.70α 
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Figure 54:  Company C Profit for Case 7 in RTS96 System 
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Table 61: Profit for Case 7 in RTS96 System 

Alpha Profit 
19.467 706.761 
19.566 742.511 
19.676 782.233 
19.678 786.645 
19.777 786.645 
22.956 786.645 
22.958 782.751 
23.057 782.751 
27.547 782.751 
27.549 757.245 
27.648 770.059 
27.719 779.249 
27.721 745.726 
27.82 756.726 

27.849 759.948 
27.851 740.109 
27.95 740.109 

30 740.109 
 
 

Table 62: LMP for Case 7 in RTS96 System 

1 14.76245 15.4089 9 14.0355 13 13.854317 13.619121 13.6324
2 14.704 6 14.442110 14.360114 13.243318 13.626 22 13.6272
3 14.05517 14.197811 13.763315 13.646219 13.676723 13.7742
4 14.33648 14.197812 13.989416 13.604420 13.739524 13.8042

 
 
 
Case 8 Incomplete Information 
 
 

Table 63: Probability of Each Scenario 

Scenarios Probability 
Base Case 0.50 
High Bid 0.10 

Low Demand 80% 0.05 
Low Demand 90% 0.15 

High Demand 110% 0.15 
High Demand 120% 0.05 

 
 
1. Marginal Cost Bid (12.9391) 
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Table 64: Profit by Marginal Cost Bid in RTS96 System 

Scenarios Profit 
Base Case 786.645 
High Bid 668.763 

Low Demand 80% 567.654 
Low Demand 90% 715.348 

High Demand 110% 861.662 
High Demand 120% 979.01 

Expected Profit 774.0835 
 
2. 120% Marginal Cost Bid (15.5269) 
 

Table 65: Profit by 120% Marginal Cost Bid in RTS96 System 

Scenarios Profit 
Base Case 740.109 
High Bid 740.109 

Low Demand 80% 655.236 
Low Demand 90% 655.236 

High Demand 110% 784.664 
High Demand 120% 978.67 

Expected Profit 741.7457 
 
3. 110% Marginal Cost Bid (14.2330) 
 

Table 66: Profit by 110% Marginal Cost Bid in RTS96 System 

Scenarios Profit 
Base Case 740.109 
High Bid 711.463 

Low Demand 80% 655.236 
Low Demand 90% 655.236 

High Demand 110% 784.664 
High Demand 120% 1022.83 

Expected Profit 741.0891 
 
4. 90% Marginal Cost Bid (11.6452) 
 

Table 67: Profit by 90% Marginal Cost Bid in RTS96 System 

Scenarios Profit 
Base Case 668.763 
High Bid 668.763 

Low Demand 80% 383.918 
Low Demand 90% 463.126 

High Demand 110% 774.513 
High Demand 120% 976.415 

Expected Profit 654.9203 
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5. Optimal Bid (13.6260) 
 

Table 68: Profit by Optimal Bid in RTS96 System 

Scenarios Profit 
Base Case 782.751 
High Bid 706.297 

Low Demand 80% 702.947 
Low Demand 90% 715.348 

High Demand 110% 865.678 
High Demand 120% 1022.83 

Expected Profit 785.4481 
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Figure 55:  Company C Profit for Incomplete Information in RTS96 System 

 

6.5 A GenBidding Tool 

Fig. 56 is the Main Menu of a GenBidding tool. Users can click Optimization -> 

Parametric Linear Programming, which will invoke a dialog (Fig. 57). One can invoke 

Microsoft Excel and set up an input data file through the dialog, and start a PLP process 
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Table 69: Profit for Incomplete Information Case in RTS96 System 

Alpha Profit Alpha Profit 
12.423 718.93 13.5611 780.74 

12.4231 720.12 13.624 781.67 
12.52 720.12 13.6241 785.42 

12.5201 760.3 13.626 785.45 
12.551 760.3 13.6261 774.05 
12.5511 763.05 13.772 774.05 
12.68 772.23 13.7721 774.56 

12.6801 773.37 13.774 774.56 
12.869 773.37 13.7741 761.77 

12.8691 773.95 13.86 772.88 
12.906 773.95 13.8601 755.99 

12.9061 774.08 13.925 755.99 
13.009 774.08 13.9251 753.24 

13.0091 772.14 14.01 753.24 
13.153 772.14 14.0101 747.99 

13.1531 771.94 14.044 750.17 
13.176 772.28 14.0441 741.09 

13.1761 772.11 14.31 741.09 
13.184 772.65 14.3101 741.48 

13.1841 771.23 14.359 741.48 
13.232 774.23 14.3591 735.93 

13.2321 773.71 14.581 738.28 
13.41 776.33 14.5811 737.86 

13.4101 776.13 14.713 739.63 
13.434 776.99 14.7131 739.27 

13.4341 776.31 15 739.27 
13.561 781.36 100 739.27 

 
. Optimization -> Profit Maximization will invoke another dialog (Fig. 58). Profit 

Maximization process takes the output file of PLP as the input file and call up an 

optimization engine. The final maximal profit, bid, and LMP will be generated as a report. 

(Fig. 58) 
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Figure 56:  Main Menu of GenBidding 

 
 

 
Figure 57:  Parametric Linear Programming 
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Figure 58:  Profit Maximization 

Users can show a system diagram (Fig. 59) through the tool. 

 
Figure 59:  System Diagram 
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CHAPTER 7. CONCLUSION 
 

7.1 Summary 

In this dissertation, a series of novel models (one hybrid and two MILPs) are 

proposed for EDC with CC units. Three evolutionary algorithms (GA, EP, and PS) are 

implemented for EDC involving non-convex cost. A mutation prediction technique is 

proposed to accelerate GA. A comparison shows pros and cons of these three stochastic 

optimization techniques. 

SFE bidding model with GENCOs’ internal production constraints is developed 

theoretically. lit – parameterization is shown to be better than kit – parameterization for a 

multiple-period model. A discrete time optimal control problem is formulated for each 

GENCO. The Nash equilibrium is analytically developed by linear algebra. 

SFE bidding model with transmission congestion as endogenous variables is 

developed theoretically. A systematic method based DC OPF sensitivity is proposed to 

solve for the Nash equilibria analytically. It is found that multiple equilibria may exist. This 

is consistent with current conjecture in the literature [24] [45]. 

GENCOs’ bidding strategies by learning algorithms are proposed. Co-evolutionary 

GA [71], and Multiple population EP and PS are reviewed and designed to evolve 

GENCOs bidding strategies for a single-period model without transmission constraints. 

GENCOs’ bidding strategies based on Linear Programming are also studied. An 

optimal bidding strategy including Parametric Linear Programming and Linear 

Programming is proposed. The proposed algorithm is able to handle piecewise staircase 
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energy offer curves, which are non-continuous and non-convex. An extension to 

incorporate incomplete information based on Decision Analysis is proposed. Finally, the 

author develops an optimal bidding tool and applies it to the RTS96 test system. 

7.2 Future Extension 

In the future, some possible research topics can be conducted based on this work. 

The author gives three aspects of possible extensions corresponding to Chapter 4,5,and 6. 

1. Supple Function Equilibrium model may be extended to incorporate GENCOs’ 

positions in a financial market. Multiple periods can be combined with transmission 

constraint model to investigate the theoretic market equilibria.  

2. New learning algorithms considering multiple periods and transmission 

constraints can be developed. 

3. Linear Programming bidding model is applied to a real-time market in this 

dissertation. The model can be extended to a day-ahead market or multiple markets (e.g. 

FTR, and Ancillary Service). Mixed Integer Programming can be applied to consider Unit 

Commitment schedules. Learning algorithms can combine LP model to do a complete 

searching. 
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